A Simple Method for Removing Bias From a Popular Measure of Standardized Effect Size: Adjusted Partial Eta Squared

J. Toby Mordkoff
Department of Psychological and Brain Sciences, University of Iowa

Abstract
Accurate estimates of population effect size are critical to empirical science, for both reporting experimental results and conducting a priori power analyses. Unfortunately, the current most-popular measure of standardized effect size, partial eta squared (η^2_p), is known to have positive bias. Two less-biased alternatives, partial epsilon squared (ε^2_p) and partial omega squared (ω^2_p), have both existed for decades, but neither is often employed. Given that researchers appear reluctant to abandon η^2_p, this article provides a simple method for removing bias from this measure, to produce a value referred to as adjusted partial eta squared (adj η^2_p). Some of the many benefits of adopting this measure are briefly discussed.

Keywords
population effect size, eta squared, partial eta squared, unbiased estimates

Received 10/29/18; Revision accepted 5/13/19

The purpose of inferential statistics is to allow researchers to make accurate statements about populations on the basis of samples from those populations. One of the main threats to this process is bias, which can range from nonrepresentative sampling, to differences in how different subjects are treated, to confounds in the experimental design, to the choice of the statistic used to summarize the results. This article concerns the last of these issues and focuses on the bias in a popular measure of standardized effect size: partial eta squared (η^2_p); for an introduction, see, e.g., Richardson, 2011).

The main strength of η^2_p is that it can be interpreted in the same manner as a squared partial correlation coefficient (r^2) from multiple linear regression: as the proportion of remaining variance in the dependent variable (i.e., the variance that cannot be “explained” by any other predictor) that can be “explained” by the predictor of interest (which would be a factor or interaction in experimental contexts). This commonality helps unify different approaches to theoretical questions, even allowing for direct comparisons between results from observational studies and those from laboratory experiments. Another strength is that η^2_p is a convenient starting point for a priori power analysis (see, e.g., Cohen, 1988), which is of high interest to all empirical scientists, especially those working in fields that may be suffering from a replication crisis (see, e.g., Ioannidis, 2005).

Unfortunately, η^2_p has notable bias: The value of this measure consistently overestimates the true population effect size (see Okada, 2013, for a recent discussion and clear demonstration). For example, assume the extreme situation in which the null hypothesis is exactly true—that is, the true means for the conditions are all the same. In this situation, under which the population effect size is clearly zero, the expected value of η^2_p is greater than zero. This is because even when the true means are all the same, the variance across the sample means will rarely, if ever, be zero. By random chance, one mean will be highest and another will be lowest, and these random differences will be “credited” to condition and cause the value of η^2_p to be greater than zero.

Corresponding Author:
J. Toby Mordkoff, Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242
E-mail: jonathan-mordkoff@uiowa.edu
Although the positive bias of $\hat{\eta}_p^2$ decreases as the true effect size increases, and also decreases as sample size increases, it is never zero.

In response to the positive bias of $\hat{\eta}_p^2$, at least two alternative measures of standardized effect size have been proposed. The first is partial epsilon squared ($\hat{\varepsilon}_p^2$; based on Kelley, 1935), and the second is partial omega squared ($\hat{\omega}_p^2$; Hays, 1963). Unfortunately, although both have been shown to have much less bias than $\hat{\eta}_p^2$ (e.g., Keselman, 1975; Okada, 2013) and at least one of these alternatives has been strongly recommended in most detailed, statistical discussions (e.g., Carroll & Nordholm, 1975; Grissom & Kim, 2012; Hays, 1963; Keselman, 1975; Maxwell & Delaney, 2004; see also Bakeman, 2005; Olejnik & Algina, 2003), neither of these alternatives has come close to supplanting $\hat{\eta}_p^2$ as the dominant measure of standardized effect size.\(^3\)

In light of this, I take a different approach here. Instead of attempting to replace $\hat{\eta}_p^2$ as the go-to measure of standardized effect size, I provide a simple method for removing bias from this popular statistic. This approach to the problem of bias in $\hat{\eta}_p^2$ takes its cue from regression analysis (starting as far back as Ezekiel, 1930), in which one often sees both R^2 (which is known to have positive bias) and adjusted R^2 (adj R^2, which is the same measure with almost all of the bias removed).

To emphasize and maintain the parallel with regression, as well as acknowledge one source for the idea, I refer to this statistic as adjusted partial eta squared, or adj $\hat{\eta}_p^2$.

Before turning to the formula, I want to point out that the proposed method for removing bias from $\hat{\eta}_p^2$ produces values that are identical to those from one of the two existing alternatives, $\hat{\varepsilon}_p^2$. In other words, the proposed process of first calculating or retrieving the value of $\hat{\eta}_p^2$ and then adjusting it to remove almost all of the bias is really a two-step method of calculating $\hat{\varepsilon}_p^2$ (see the appendix for an algebraic proof of this). The decision to emulate $\hat{\varepsilon}_p^2$ (instead of $\hat{\omega}_p^2$) was based on two factors. First, the proposed method matches the well-established method that is used for regression: Mathematically, adj $\hat{\eta}_p^2$ is to $\hat{\eta}_p^2$ as adj R^2 is to R^2 (see Levine & Hullett, 2002). Second, in several comparisons (e.g., Carroll & Nordholm, 1975; Keselman, 1975; Okada, 2013), $\hat{\varepsilon}_p^2$ has been shown to be very close to completely unbiased, whereas $\hat{\omega}_p^2$ has been found to have a small but consistent (negative) bias. Thus, modeling adj $\hat{\eta}_p^2$ on $\hat{\varepsilon}_p^2$ means that no new evidence of its superior accuracy is needed; what is already known about $\hat{\varepsilon}_p^2$ applies equally to adj $\hat{\eta}_p^2$.

Calculating Adjusted Partial Eta Squared

Measures of standardized effect size have usually been presented in terms of sum-of-squares (SS) values (see, e.g., Maxwell, Camp, & Arvey, 1981), which can sometimes be daunting to nonstatisticians. For example, one formula for adj $\hat{\eta}_p^2$ (when expressed in a way that applies to all types of experimental designs—between subjects, within subjects, and mixed) is as follows:

$$\hat{\eta}_p^2 = \frac{SS_{\text{effect}}}{SS_{\text{effect}} + SS_{\text{error}}}.$$

(1)

Similarly, the typical formula for $\hat{\varepsilon}_p^2$ involves a combination of SS values, a mean SS value (MS), and degrees of freedom:

$$\hat{\varepsilon}_p^2 = \frac{SS_{\text{effect}} - df_{\text{effect}} \times MS_{\text{error}}}{SS_{\text{effect}} + SS_{\text{error}}}.$$

(2)

The current approach starts with a much more user-friendly formula for $\hat{\eta}_p^2$ (Cohen, 1973, Equation 2; Levine & Hullett, 2002, Equation 3)—one that can easily be applied, after the fact, to the results from any F test, because the only required values are always available:

$$\hat{\eta}_p^2 = \frac{F \times df_{\text{effect}}}{F \times df_{\text{effect}} + df_{\text{error}}}.$$

(3)

Alternatively, if only one half has access to the results from a t test, the formula is as follows:

$$\hat{\eta}_p^2 = \frac{t^2}{t^2 + df_{\text{error}}}.$$

(4)

In the case of $\hat{\varepsilon}_p^2$, bias can also be moved from the calculation in a user-friendly manner (i.e., using only values that are readily available). The formula for adj $\hat{\eta}_p^2$ is this:

$$\text{adj } \hat{\eta}_p^2 = \hat{\eta}_p^2 - (1 - \hat{\eta}_p^2) \times \frac{df_{\text{effect}}}{df_{\text{error}}}.$$

(5)

If the value for $\hat{\eta}_p^2$ comes from a t test, then the value of df_{effect} is 1.

Note how expressing the method of adjustment in this manner—calculating the adjusted value as the original value minus an estimate of the bias—makes three (known) things quite clear: The amount of bias in $\hat{\eta}_p^2$ is proportional to the unexplained (error) variance, via $1 - \hat{\eta}_p^2$; the amount of bias is also proportional to the number of predictors or conditions, via df_{effect}; and the bias is inversely proportional to the size of the sample, via df_{error}. Thus, for any fixed number of conditions, the most bias occurs when the true standardized effect size is small and the number of subjects or observations is low. Dangerously, these two things often co-occur in exploratory experiments, which makes a correction for bias particularly important in these situations.

To illustrate the importance of adjusting $\hat{\eta}_p^2$ to remove bias, I offer the following example. Assume a one-way between-subjects design with three conditions and 10 subjects per group (i.e., $df_{\text{effect}} = 2$ and $df_{\text{error}} = 27$). If the observed value of $\hat{\eta}_p^2$ is .200, then the value of adj $\hat{\eta}_p^2$ is $.200 - (1 - .200)(2/27)$, which is only .141. Similarly, assuming a one-way within-subjects design with
four conditions and 12 subjects (i.e., $df_{\text{effect}} = 3$ and $df_{\text{error}} = 33$), if the value of $\hat{\eta}_p^2$ of 0.400, then the value of adj $\hat{\eta}_p^2$ is $0.400 - (1 - 0.400)(3/33)$, which is 0.345. In short, the amount of bias that can (and should) be removed from $\hat{\eta}_p^2$ can be substantial.

With that said, it is important to note that adjusting $\hat{\eta}_p^2$ deals only with bias in the narrow, technical, statistical sense (which is defined as the difference between the expected value of an estimator and the true population value). It does not, for example, remove any of the problems associated with design confounds, demand characteristics, experimenter bias, or various questionable research practices, such as the unjustified omission of some subjects’ data. Nor does the use of adj $\hat{\eta}_p^2$ address the problems of p-hacking or publication bias. The present method is designed only to correct the statistical problems that are inherent to using (unadjusted) $\hat{\eta}_p^2$.

Adopting Adjusted Partial Eta Squared

One possible criticism of adj $\hat{\eta}_p^2$ is that it is not anything new—that no new label or formula is needed or warranted, given that adj $\hat{\eta}_p^2$ is mathematically equivalent to $\hat{\omega}_p^2$ (see the appendix). There are two counterarguments to this criticism. First, $\hat{\omega}_p^2$ has had 80+ years to make inroads (and $\hat{\omega}_p^2$ has had 50+ years), but adj $\hat{\eta}_p^2$ remains dominant, despite being known to be biased. It is time to try a different approach—one that does not ask researchers to completely abandon their favorite measure. Second, retaining adj $\hat{\eta}_p^2$ as one measure of standardized effect size, while also providing a simple method for removing almost all of the bias, may cause more researchers to acknowledge the bias in adj $\hat{\eta}_p^2$ and, therefore, be motivated to do something about it. The proposed formula for adj $\hat{\eta}_p^2$ makes explicit the sources of the bias, while the mere existence of a formula for adjusting adj $\hat{\eta}_p^2$ acts as a reminder that the (uncorrected) measure really is biased.

Another possible criticism of adj $\hat{\eta}_p^2$ (when compared with, e.g., additional attempts to encourage the use of either $\hat{\varepsilon}_p^2$ or $\hat{\omega}_p^2$) is that it may add confusion. Instead of a single measure of standardized effect size, there would be two: one with noticeable (positive) bias and one that is almost completely unbiased. The counter-argument is that highly biased and almost unbiased measures—R^2 and adj R^2, respectively—have coexisted in the regression literature for decades with little or no problem. In fact, having the two measures side by side will act as a reminder of the issue of bias, which can be crucial in certain contexts, such as power analysis, in which overestimates of the population effect size lead to underpowered experiments and possible failures to replicate. Furthermore, anything that emphasizes the commonalities between analysis of variance and regression could be of some benefit, as anyone who already understands the purpose of adj R^2 will immediately see the value of adj $\hat{\eta}_p^2$.

It should be noted, however, that removing bias from adj $\hat{\eta}_p^2$ has the consequence of increasing its variability (see Albers & Lakens, 2018, for a clear demonstration). The amount by which the variability is increased depends entirely on the ratio of the degrees of freedom (in this case, the size of the effect does not play a role), but it can be nonnegligible. Assuming, for example, a one-way three-level between-subjects design with only 10 subjects per group (i.e., a ratio of degrees of freedom of 2/7), the variance of any set of adj $\hat{\eta}_p^2$ values will be 15% higher than the variance of the corresponding (uncorrected) $\hat{\eta}_p^2$ values. Moreover, when the true population effect size is small and the size of the sample is small, specific values of adj $\hat{\eta}_p^2$ can be negative, because of sampling error, and these cannot be “rounded up” to zero without introducing a new form of positive bias (see Okada, 2017). To put this in technical terms, although adj $\hat{\eta}_p^2$ is much less biased than $\hat{\eta}_p^2$, it is also a bit less efficient.

More generally, it is important to recognize that having the least biased estimate of some population parameter is only a part of the story. For a more complete picture, some associated estimate of sampling error, such as a confidence interval, should also be calculated. Although this is quite complicated in the case of a population effect size, as it requires the use of the noncentral F distribution (e.g., Smithson, 2001; Steiger, 2004; see Cumming & Finch, 2001, for an introduction), calculation of a confidence interval is highly recommended. If nothing else, a confidence interval will provide researchers with a very clear warning as to the dangers of estimating the population effect size from a small sample.

To end on a positive note, that switching to a less biased estimate of population effect size will prevent a much thornier problem that arises when the results from experiments with very different numbers of subjects are compared. Recall that the amount of bias in adj $\hat{\eta}_p^2$ is inversely proportional to df_{error}, which is highly dependent on the number of observations. If two experiments involve the same manipulations and measures (as would be the case for exact replications), but one experiment has twice as many subjects as the other, then the larger study is expected to produce a slightly smaller adj $\hat{\eta}_p^2$, because of less positive bias in the estimate. Thus, all exact replications with increased numbers of subjects are expected to produce smaller values of adj $\hat{\eta}_p^2$ than the original experiment, especially when the population effect size is small. This shrinkage of adj $\hat{\eta}_p^2$ going from a smaller to a larger experiment will occur even in the absence of any questionable research practices (John, Loewenstein, & Prelec, 2012); it is a consequence...
of the different amounts of bias. In contrast, because adj $\hat{\eta}_p^2$ is almost completely unbiased, the values for larger and smaller experiments are expected to be almost exactly the same.

In summary, an accurate estimate of population effect size is critical to many steps in the scientific process, from a priori power analysis to the comparison of new results with previous experiments and studies. Sadly, the current most-popular measure of standardized effect size—$\hat{\eta}_p^2$—has notable (positive) bias. Fortunately, a simple method can remove almost all of the bias from this measure. This method of adjustment, which produces a value here named adjusted partial eta squared, adj $\hat{\eta}_p^2$, can (and should) be applied to all estimates of population effect size.

Appendix: Proof of the Equivalence of Adjusted Partial Eta Squared and Partial Epsilon Squared

Start with the following user-friendly formula for $\hat{\eta}_p^2$ (Cohen, 1973, Equation 2):

$$\hat{\eta}_p^2 = \frac{F \times df_{\text{effect}}}{F \times df_{\text{effect}} + df_{\text{error}}}.$$ \hspace{1cm} (A1)

The proposed formula for correcting this value for bias is

$$\text{adj } \hat{\eta}_p^2 = \hat{\eta}_p^2 - (1 - \hat{\eta}_p^2) \times \frac{df_{\text{effect}}}{df_{\text{error}}}.$$ \hspace{1cm} (A2)

Inserting Equation A1 into Equation A2 creates a one-step method of calculating adj $\hat{\eta}_p^2$:

$$\text{adj } \hat{\eta}_p^2 = \frac{F \times df_{\text{effect}}}{F \times df_{\text{effect}} + df_{\text{error}}} - \left(1 - \frac{F \times df_{\text{effect}}}{F \times df_{\text{effect}} + df_{\text{error}}} \right) \times \frac{df_{\text{effect}}}{df_{\text{error}}}. \hspace{1cm} (A3)$$

Next, create a common denominator within the parentheses using identity:

$$\text{adj } \hat{\eta}_p^2 = \frac{F \times df_{\text{effect}}}{F \times df_{\text{effect}} + df_{\text{error}}} - \frac{F \times df_{\text{effect}} + df_{\text{error}}}{F \times df_{\text{effect}} + df_{\text{error}}} \times \frac{df_{\text{effect}}}{df_{\text{error}}}. \hspace{1cm} (A4)$$

Simplify the parenthetical by subtraction:

$$\text{adj } \hat{\eta}_p^2 = \frac{F \times df_{\text{effect}}}{F \times df_{\text{effect}} + df_{\text{error}}} - \frac{df_{\text{error}}}{F \times df_{\text{effect}} + df_{\text{error}}} \times \frac{df_{\text{effect}}}{df_{\text{error}}}. \hspace{1cm} (A5)$$

Then multiply:

$$\text{adj } \hat{\eta}_p^2 = \frac{F \times df_{\text{effect}}}{F \times df_{\text{effect}} + df_{\text{error}}} - \frac{df_{\text{effect}}}{F \times df_{\text{effect}} + df_{\text{error}}}.$$ \hspace{1cm} (A6)

Then subtract:

$$\text{adj } \hat{\eta}_p^2 = \frac{F \times df_{\text{effect}} - df_{\text{effect}}}{F \times df_{\text{effect}} + df_{\text{error}}}.$$ \hspace{1cm} (A7)

Then simplify:

$$\text{adj } \hat{\eta}_p^2 = \frac{(F - 1) \times df_{\text{effect}}}{F \times df_{\text{effect}} + df_{\text{error}}}.$$ \hspace{1cm} (A8)

The expression on the right side of the equal sign in Equation A8 is mathematically equivalent to a user-friendly formula for $\hat{\varepsilon}_p^2$ (see, e.g., Carroll & Nordholm, 1975, Equation 11). Therefore,

$$\text{adj } \hat{\eta}_p^2 = \hat{\varepsilon}_p^2.$$ \hspace{1cm} (A9)

It is worth noting that Equation A8 provides a convenient method of calculating adj $\hat{\eta}_p^2$ directly from the results of an F test, without first finding the value of $\hat{\eta}_p^2$. (If you start from a t test instead, recall that $F = t^2$ and that df_{effect} for a t test is 1.)

Action Editor

Simine Vazire served as action editor for this article.

Author Contributions

J. T. Mordkoff is the sole author of this article and is responsible for its content.

Acknowledgments

I thank Joe Hilgard, Andrew Hollingworth, Cathleen Moore, Kensuke Okada, Teresa Treat, and one anonymous reviewer for their helpful comments, and Daniel Q. Naiman for first teaching me about unbiased estimators.

Declaration of Conflicting Interests

The author(s) declared that there were no conflicts of interest with respect to the authorship or the publication of this article.

Open Practices

Open Data: not applicable
Open Materials: not applicable
Preregistration: not applicable

Notes

1. There is one situation in which the most popular measure of standardized effect size is actually $\hat{\eta}_p^2$ instead of $\hat{\eta}_p^2$: one-way between-subjects analysis of variance. Because this situation is now rare (i.e., most modern experiments involve multiple factors, repeated measures, or both) and all formulas related to $\hat{\eta}_p^2$
produce the correct values for $\hat{\eta}^2$ as well, I refer to the measure generically as $\hat{\eta}^2$, even when it is (technically) $\hat{\eta}_{p}^2$.

2. Informal conversations with my colleagues provided many reasons why $\hat{\eta}^2_{p}$ continues to be the most popular, despite the known bias. These reasons (paraphrased) include the following: “That’s what I see in published papers,” “that’s what journals ask for,” “that’s what my stats package gives me,” “that’s what I use for power analysis,” and “the formula for omega or epsilon squared is too complicated.” These responses played a key role in motivating me to propose the present approach, and I appreciate my colleagues’ candor. (Full disclosure: The most-frequent reason provided by students was “that’s what you taught me to do.”)

References

