Using a Vulnerability–Stress–Adaptation Framework to Predict Physical Aggression Trajectories in Newlywed Marriage

Amie Langer, Erika Lawrence, and Robin A. Barry
University of Iowa

The authors used a vulnerability–stress–adaptation framework to examine personality traits and chronic stress as predictors of the developmental course of physical aggression in the early years of marriage. Additionally, personality traits and physical aggression were examined as predictors of the developmental course of chronic stress. Data from 103 couples collected 4 times over the first 3 years of marriage were analyzed with an actor–partner interdependence model and structural equation modeling techniques. Personality traits of husbands predicted their own physical aggression and stress trajectories, as well as their wives’ levels of stress and physical aggression. Personality traits of wives predicted their levels of stress and physical aggression and predicted changes in their physical aggression over time. Both husbands’ and wives’ changes in stress predicted changes in physical aggression over time. Implications for employment of a vulnerability–stress–adaptation model in the study of physical aggression and for improvement of the efficacy of therapies targeting physical aggression in intimate relationships are delineated.

Keywords: APIM, couples, marital, physical aggression, VSA model

Physical aggression in romantic relationships is surprisingly common; rates range from 25% to 57% in studies of dating, cohabiting, engaged, and married couples (e.g., O’Leary et al., 1989; Schumacher & Leonard, 2005) and from 10% to 20% in nationally representative surveys (e.g., Straus & Gelles, 1990). Men and women are equally likely to engage in physical aggression against their partners. The most frequently employed behaviors include grabbing, pushing, and slapping, whereas more severe behaviors, such as punching and kicking, are less common (e.g., Leonard & Roberts, 1998). However, research has established that even mild forms of physical aggression have implications for both individual well-being (e.g., depression, anxiety, substance use, global physical health; Coker et al., 2002; Umberson, Anderson, Glick, & Shapiro, 1998) and family functioning (e.g., child delinquent behaviors and psychopathology; Fantuzzo, DePaola, Lambert, & Martino, 1991). Several theories of partner aggression have been tested to explicate the presence or onset of physical aggression (e.g., social learning models; O’Leary, 1988) but not necessarily to explicate its longitudinal course. Moreover, only a few empirically supported interventions have targeted physical aggression in intimate relationships, and those that have done so are limited in their efficacy (e.g., Babcock, Green, & Robie, 2004; Murphy & Eckhardt, 2005). Our purpose in the present study was to improve understanding of the longitudinal course of physical aggression in intimate relationships by employing an existing theoretical model to examine the factors that lead to changes in aggression over time.

The Vulnerability–Stress–Adaptation Model

The vulnerability–stress–adaptation (VSA) model of marital dysfunction, which emerged from a diathesis-stress model of individual psychopathology (e.g., Zubin & Spring, 1977), provides a framework for clarifying how marriages change over time (Karney & Bradbury, 1995). According to the VSA model (see Figure 1), individuals bring preexisting vulnerabilities to their marriages that may take the form of personality traits (e.g., neuroticism) and/or experiential factors (e.g., parental divorce). Such vulnerabilities are expected to be relatively stable. Marriages are also impacted by stressful events (e.g., loss of a job) and circumstances (e.g., poverty, chronic illness) that can occur due to chance factors, spouses’ vulnerabilities, and/or adaptive processes. Finally, adaptive processes represent interactions between spouses that evolve as couples respond to stress and are conceptualized as behavioral exchanges that may be positive or negative in valence (e.g., conflict management skills, partner support). Links among vulnerabilities, stressors, and behaviors, both adaptive and maladaptive, are expected to lead to changes in marital satisfaction and dissatisfaction and, ultimately, marital stability and instability. In short, the VSA model has the potential to explain between-couple variability and within-couple longitudinal change in marriage.

Regardless of whether they have studied relationship dysfunction within a VSA framework or within a more traditional behavioral or social learning framework, researchers and therapists have focused on negative affect and behaviors exhibited during
problem-solving interactions (e.g., negative escalation, negative reciprocity; Gottman & Levenson, 2002). However, research has established that physical aggression is another process that leads to relationship dissatisfaction and instability (e.g., Arias, Lyons, & Street, 1997) and that aggression is a significantly stronger predictor of divorce than are other behaviors exhibited during conflict interactions (e.g., Rogge & Bradbury, 1999). Given the research demonstrating that two thirds of couples who seek couple therapy report the presence of physical aggression (e.g., O'Leary, Vivian, & Malone, 1992), we believed that interventions designed to treat marital discord would likely be more effective to the extent that physical aggression in particular was a target of change. In light of these facts, we employed a unique approach to the VSA model by conceptualizing physical aggression as a key dyadic process in the model.

Before couple therapies can be revised to include treatment components that target physical aggression, theoretically guided empirical research is needed for clarification of the key predictors of its longitudinal course. Although there is a wealth of evidence regarding the predictors of physical aggression in general, relatively little has been established about their influence on its development over time. The existing research on trajectories of physical aggression in marriage is equivocal regarding its systematic change over time, but there is clear evidence of significant variability in the perpetration of physical aggression both between couples in general and within couples over time (e.g., O'Leary et al., 1989; Schumacher & Leonard, 2005). Thus, it is important to account for the patterns underlying this variability, as different factors may explain systematic changes in aggression trajectories. Using a VSA framework in the present study, we conceptualized physical aggression as a temporally dynamic process that is influenced by individual vulnerabilities and contextual factors. Within this premise, trajectories of husbands' and wives' physical aggression were predicted from the direct and indirect influences of two critical risk factors: personality traits and stress.

Personality Characteristics: Impulsivity, Manipulativeness, and Aggressiveness

Personality traits influence the way individuals experience interpersonal relationships (e.g., Simpson, Winterheld, & Chen, 2006), and there is accumulating evidence that personality may be a significant factor in the onset of physical aggression in romantic relationships. *Diagnostic and Statistical Manual of Mental Disorders* (4th ed.; *DSM–IV*; American Psychiatric Association, 1994) Axis II personality pathology in general and, more specifically, antisocial personality disorder (ASPD) and borderline personality disorder (BPD) are associated with the perpetration of partner aggression (e.g., Andrews, Foster, Capaldi, & Hops, 2000; Capaldi & Owen, 2001; Edwards, Scott, Yarvis, Paizis, & Panizzon, 2003). However, the examination of personality within the context of *DSM–IV* diagnostic categories is likely to lead to a loss of relevant information, because the diagnostic categories are highly comorbid and heterogeneous (e.g., Widiger & Samuel, 2005). Alternatively, the facet-level personality traits underlying these disorders have superior psychometric properties and may predict behavioral outcomes better than do broad diagnostic categories (e.g., Paunonen & Ashton, 2001; Reynolds & Clark, 2001). Further, whereas personality disorder diagnoses in a community sample may be relatively rare, there is variability in the continuously measured underlying traits (Clark, Simms, Wu, & Casillas, in press). Thus, it may be more fruitful to consider the fundamental dimensions of *DSM* personality disorders as opposed to diagnostic categories, as there likely are commonalities within these broader trait domains that account for the associations between these disorders and physical aggression.

ASPD and BPD are subsumed under *DSM–IV* Cluster B (“dramatic/erratic”) disorders and are differentiated from other personality clusters not only by their associations with high emotional dysregulation, low empathy, and stress reactivity (e.g., Crawford et al., 2006; Kraus & Reynolds, 2001) but by their extreme “action-oriented” features (e.g., Fossati et al., 2007). Not surprisingly, the personality facets subsumed under Cluster B—in particular, impulsivity, manipulativeness, and aggressiveness—are associated with maladaptive social conduct and physically aggressive behavior (Clark et al., in press). For example, impulsivity is linked to difficulties in regulating thoughts and behaviors, and manipulativeness is associated with a lack of empathy and exploitative interpersonal interactions. All of these personality facets may lead to a greater likelihood of engaging in physically aggressive behavior (e.g., Stafford & Cornell, 2003). Not surprisingly, trait aggressiveness,

![Figure 1. The vulnerability–stress–adaptation (VSA) model (Karney & Bradbury, 1995). It was not within the scope of the current study to test the entire model. Paths examined are denoted by bold lines (A, B, C, E). Paths not examined are denoted by dashed lines (D, F, G, H). In accord with full actor–partner independence modeling (APIM) and growth curve modeling guidelines, paths were estimated separately and simultaneously for husbands and wives; within and across spouses (i.e., actor and partner paths); and for intercepts and slopes for stress and physical aggression.](image-url)
defined as the tendency to feel argumentative and vengeful and the
desire to engage in destructive behaviors, also facilitates aggres-
sive actions (Buss & Perry, 1992).

The examination of personality in the context of intimate partner aggression has revealed significant associations between male physical aggression and these personality traits (e.g., Dutton & Bodnarchuk, 2005; Stuart & Holtzworth-Munroe, 2005). Unfortunately, most of these studies have been limited to (a) clinical samples (e.g., batterers), which limit the generalizability of the findings; (b) male samples, which limit our ability to understand physically aggressive behavior among women; and (c) cross-sectional investigations, which prohibit us from explicating the longitudinal course of physical aggression. There have been important exceptions to these limitations, such as occasional investigations of physical aggression in community samples of men and women; however, the results of these studies have been mixed. For example, in one longitudinal study of community newlywed couples, impulsivity was associated with physical aggression at 30 months of marriage for wives but not for husbands (O'Leary, Malone, & Tyree, 1994). In a separate cross-sectional community sample, both male and female perpetrators of partner violence evidenced more trait aggressiveness than did nonviolent individuals (Ehrensaft, Moffitt, & Caspi, 2004). A key limitation of prior research on partner physical aggression and these personality traits is that such research has been limited almost exclusively to cross-sectional data, to males, and to clinical populations. In addition, although there is evidence for women's antisocial behavior predicting men's physical aggression (Kim & Capaldi, 2004), few studies have examined the impact of partner personality traits on an individual's physical aggression. Moreover, the impact of male characteristics on female physical aggression has received even less attention. In the present study, we sought to build on past research by examining the personality traits of impulsivity, manipulativeness, and aggressiveness as predictors of one's own and one's partner's longitudinal courses of physical aggression in a community sample of men and women.

Stress

In addition, we sought to examine stress as a predictor of physical aggression trajectories. Stress is associated with disruptions in cognitive and behavioral control (e.g., Rutledge & Linden, 1998). It activates negative affective responses and processes, such as the fight-or-flight response, that are linked to physically aggressive behavior (Berkowitz, 1990). Given that one's ability to resolve marital conflict effectively requires particular cognitive and affective resources, it seems plausible that access to such internal resources would be hindered in times of stress. Past research has established that stressful circumstances external to one's marriage can negatively affect dyadic processes between spouses (e.g., withdrawal from marital interaction; Story & Repetti, 2006). Although most of the research on stress and partner physical aggression has focused on males, there is evidence linking life stressors and physical aggression for both sexes (Barling & Rosenbaum, 1986; Cano & Vivian, 2003).

In light of research demonstrating that chronic stress can influence how well couples react to or cope with acute stressors (Karney, Story, & Bradbury, 2005), we were particularly interested in the influence of chronic stress on physical aggression. For example, in a study of newlyweds over the first 3 years of marriage, Frye and Karney (2006) examined the role of chronic stress in the perpetration of physical aggression and found that, under higher levels of chronic stress, both husbands and wives were more likely to be physically aggressive. As the only longitudinal examination of chronic stress and physical aggression among both husbands and wives, this study represents an important contribution to the literature. However, there are many ways in which this work can be built upon in future research. For example, modeling physical aggression continuously (rather than dichotomously), examining associations among changes in stress and aggression over time (rather than at each time point separately), analyzing husbands' and wives' data simultaneously, and including cross-spouse associations are ways in which we have attempted to build on these findings.

Overview of the Present Study

Although the consequences of physical aggression have been well documented, many questions remain regarding the predictors of the longitudinal course of physical aggression in marriage. With the advent of statistical techniques that increase our ability to model change over time and that better account for the interdependence of dyadic data, we attempted to overcome prior methodological limitations by analyzing men's and women's physically aggressive behavior toward their partners four times over the first 3 years of marriage. Physical aggression was scaled as a continuous and dynamic phenomenon and was calculated separately for husbands and wives. We used both self and partner reports to arrive at a total physical aggression score for each spouse. Capaldi and Kim (2007) called for a dynamic approach that conceptualizes physical aggression as (a) involving the interaction of two individuals, each with influence on the other, and (b) being embedded in contextual influences that change over time. Consistent with this approach, we utilized growth curve modeling techniques to analyze and predict average levels (intercepts) and rates of change (slopes) in stress and aggression and employed actor-partner interdependence modeling (APIM; Kenny, Kashy, & Cook, 2006; Raudenbush, Brennan, & Barnett, 1995) and structural equation modeling (SEM) techniques to predict within- and cross-spouse paths of husbands' and wives' trajectories. Finally, we employed the VSA model to frame our investigation of the individual and contextual factors that predict the longitudinal course of physical aggression in marriage.

We had two aims in the present study. The first was to replicate and extend prior research on the natural course of husbands' and wives' physical aggression over the early, high-risk period for divorce (Cherlin, 2004). In view of past findings (e.g., O'Leary et al., 1989), we hypothesized that approximately one half of couples would report engaging in physical aggression, that the aggression would consist largely of moderately aggressive acts (e.g., grabbing, pushing, and slapping), and that the majority of aggressive couples would report mutual aggression (i.e., both the husband and the wife would report engaging in aggression). We also examined rates of change in aggression over the early years of marriage. There is little prior research on trajectories of aggression, but the data that do exist provide evidence for increases (e.g., Quigley & Leonard, 1996), decreases (e.g., O'Leary et al., 1989), and no linear change (e.g., Lawrence & Bradbury, 2007) in aggression.
over time. We tentatively predicted that rates of change in husbands’ and wives’ physical aggression would vary widely across spouses but that there would be no average systematic change.

Our second aim was to test the relevant components of the VSA model as presented by Karney and Bradbury (1995) to explicate key predictors of husbands’ and wives’ physical aggression trajectories. As demonstrated in Figure 1, we tested four paths of the VSA model: (A) stress → physical aggression; (B) personality → physical aggression; (C) personality → stress; and (E) physical aggression → stress. All of the paths we hypothesized a priori were based on within-spouse associations. We also explored potential gender differences and cross-spouse associations for all paths but, given that the existing literature reveals equivocal findings, we did not make specific predictions.

Path A: Stress → physical aggression. On the basis of research that demonstrated the emotional and behavioral consequences of chronic stress, we expected that individuals who reported higher levels of stress would be more likely to engage in physically aggressive behavior. We hypothesized that greater average levels of stress would be associated with greater average levels of physical aggression in the first 3 years of marriage and that increases in stress over time would predict increases in physical aggression over time.

Path B: Personality → physical aggression. Taking past research on personality dimensions into consideration, we were particularly interested in the specific personality traits associated with physical aggression. We hypothesized that spouses who were more impulsive, manipulative, and aggressive would report greater average perpetration of physical aggression and greater increases in physical aggression over time.

Path C: Personality → stress. Given that the personality traits identified are associated with deficits in emotional and behavioral control, these traits are likely also associated with the tendency to experience more stress. Thus, we predicted that each of these traits would be associated with the experience of stress, such that spouses who were more impulsive, manipulative, and aggressive would report greater chronic stress on average and increases in chronic stress over time.

Path E: Physical aggression → stress. Few studies have examined stress as a consequence of physical aggression (e.g., Testa & Leonard, 2001), so the examination of this path was exploratory in nature. However, it is likely that the negative consequences of physical aggression would lead to greater stress in areas beyond the marriage (e.g., relations with friends, work, and one’s own health). Therefore, we included this path to allow for the investigation of the influence that physical aggression trajectories may have on stress trajectories. However, we hypothesized that stress would demonstrate predictive dominance over physical aggression, such that the effects of stress on aggression would be stronger than the effects of aggression on stress.

We also tested the same paths of the VSA model with personality conceptualized as the diagnostic category of ASPD in order to assess the utility of (higher order) diagnostic categories versus (lower order) personality facets in the prediction of physical aggression trajectories. We argue that research on lower order traits as predictors of physical aggression in intimate relationships would be more clinically useful and would allow for greater generalizability of our findings. Therefore, we hypothesized that the associations revealed in Paths B and C would be stronger when personality was operationalized in terms of traits and, specifically, that manipulativeness, impulsivity, and aggressiveness would more strongly predict stress and physical aggression than would ASPD.

Method

Participants and Procedures

Participants were recruited through marriage license records in the Midwest. Newlyweds between 18 and 55 years of age were mailed letters that explained the study and invited them to participate. Of the 1,698 letters that were sent, 358 (21%) were answered by couples who expressed interest in participation by sending an e-mail, leaving a telephone message, or returning the stamped postcard we included with the letter. Telephone screening was completed on 189 of the interested couples to ensure they met the following eligibility requirements: relatively fluent in English, married less than 6 months, and in their first marriages. The remaining 169 couples did not complete the telephone screen (e.g., 1 spouse did not want to participate, the couple could not be reached, the couple was moving out of state). Of the 189 couples who completed the telephone screen, 42 were ineligible because they were not in their first marriages, and 6 declined to participate after completion of the telephone screen. Questionnaire packets were sent to the remaining 141 couples, and the first 105 couples who completed their packets and kept their initial laboratory appointments were included in the present study. One couple’s data were deleted because it was revealed during the laboratory session that it was not the wife’s first marriage. The data from the husband of another couple were removed because his responses were deemed unreliable. By the end of the fourth wave of data collection, 3 couples had been lost to attrition and 6 couples had divorced; however, available data from these couples were included in the present study. Thus, data analyses were conducted on 103 couples.¹

Couples had dated an average of 44 months (SD = 27) prior to marriage, and 80% of them had cohabited premaritally. Average estimated annual joint income was between $40,000 and $50,000, and modal education was 14 years. Husbands’ average age was 26.23 years (SD = 3.60), and wives’ average age was 24.99 years (SD = 3.80). For 15% of our sample, at least 1 spouse self-identified as a member of a racial minority group. Of spouses, 5% self-identified as African American, 7% as Asian American, 4% as Hispanic, 1% as Middle Eastern, and 2% as “Other.” (The proportion of non-Caucasian individuals in Iowa is 7%; U.S. Census Bureau). By Time 4 of the study, 35% of the couples were parents.

¹ Although data from this sample have been published elsewhere (e.g., Brock & Lawrence, 2008; Ro & Lawrence, 2007), this is the first article to examine personality variables and the first to examine predictors of physical aggression.
Demographic variables were not significantly related to the key variables in this study.

Spouses participated in four waves of data collection: at 3–6 months (Time 1), 12–15 months (Time 2), 21–24 months (Time 3), and 30–33 months (Time 4) of marriage. Time 1 included the completion of questionnaires at home and a laboratory session that involved procedures beyond the scope of the present study. Times 2, 3, and 4 comprised the completion of questionnaires at home. Measures of personality traits were completed once (at Time 2), and measures of chronic stress and physical aggression were completed at all four time points. Couples were paid $100 at Time 1 and $50 at each time point for Times 2, 3, and 4.

Measures

Physical aggression. The Revised Conflict Tactics Scales (Straus, Hamby, Boney-McCoy, & Sugarman, 1996) is a 78-item self-report scale of aggression that has occurred in the context of conflicts (e.g., physical, psychological, and sexual tactics) with a partner during the previous 6 months. It has moderate internal consistency and yields significant interpartner agreement (Straus et al., 1996). In the current study, only the Physical Assault Scale was used and partners reported on husband-to-wife and wife-to-husband aggression. Examples of items include throwing something at a partner; pushing, grabbing, or shoving a partner; and punching or hitting a partner. Items are rated on 7-point scales, ranging from never to more than 20 times. We calculated composite scores by adding the midpoints for each response category across tactics (e.g., the midpoint 4 for 3–5 times), as recommended by Straus et al. (1996). Interspousal agreement (i.e., husbands’ and wives’ reports on husbands’ aggression and husbands’ and wives’ reports on wives’ aggression) was uniformly strong and significant (rs ranged from .61 to .74, all ps < .01). We calculated the total score for each participant by averaging his or her self-reported aggression and the partner’s report of his or her aggression; this method is more reliable than use of data from only one informant (Strahan, 1980). Alphas ranged from .72 to .85 across husband and wife reports and across time.

Personality traits. The Schedule for Nonadaptive and Adaptive Personality–2 (SNAP-2; Clark et al., in press) is a 390-item, factor-analytically-derived self-report inventory designed to assess personality traits that extend from the normal to the pathological range. It comprises 3 temperament scales, 12 trait scales, and 13 diagnostic scales and demonstrates good internal consistency, discriminant validity, and test-retest reliability across multiple samples (Reynolds & Clark, 2001). Three of the trait scales—Impulsivity, Manipulativeness, and Aggressiveness—and the Antisocial Personality diagnostic scale were included in our study. The 3 trait scales each comprise 20 true/false items, and the ASPD scale contains 34 true/false items. Impulsivity on the SNAP-2 is defined as the “tendency to act on a momentary basis . . . versus the tendency to stop and think things over before acting” (Clark et al., in press, p. 50). Manipulativeness is defined as “an egocentric willingness to use people for personal gain without regard for the rights or feelings of others or for abstract ideals such as fairness” (Clark et al., in press, p. 47). It is measured as the extent to which a person enjoys exploiting others and views this behavior as a skill. Aggressiveness on the SNAP-2 measures individual differences in the frequency and intensity of the experience of anger. According to Clark et al., “High scorers anger easily with slight provocation, have difficulty controlling their anger both internally and externally, stay angry longer, to the point of holding grudges and seeking revenge, and derive pleasure from violence” (p. 48). The ASPD scale was included to assess clusters of traits that represent the DSM–IV diagnosis. This scale contains items assessing conduct disorder before the age of 15, irresponsibility, lying, and illegal acts. For husbands and wives, alphas ranged from .70 to .76 across the scales.

Chronic stress. We used a modification of an interview protocol developed by Hammen et al. (1987) to assess chronic stress via a paper-and-pencil, self-report method; similar modifications have been used previously (e.g., Frye & Karney, 2006). The measure covers nine domains that may generate chronic stress, including relationship domains (relations with spouse, family, in-laws, and friends) and other life domains (school, work, home, financial status, and health). The present study excluded “relationship with spouse”; the remaining eight domains were deemed nonmarital domains to account for chronic stress external to the marriage. The measure assesses a type of chronic stress resulting from role occupancy (Wheaton, 1997) and has implications for individual and dyadic functioning (e.g., Karney et al., 2005). At each assessment, spouses chose the number that best represented their experiences in these areas on 9-point scales; higher numbers indicated greater stress. Scores at each time point were obtained by averaging the scores across the eight domains, because not all domains applied to every participant (e.g., school). Alphas ranged from .72 to .81 for husbands and wives across time.

Data Analyses

We employed APIM for mixed independent variables (Kenny et al., 2006). In an APIM, there are two dyad members and at least two variables, X and Y, for each. When dyad members are distinguishable, as is the case in our sample of heterosexual married couples, there are potentially two actor effects: one for the effects of the husband’s predictor on the husband’s outcome and one for the effect of the wife’s predictor on the wife’s outcome. There are also potentially two partner effects, one for the effect of the husband’s predictor on the wife’s outcome and one for the effect of the wife’s predictor on the husband’s outcome. Finally, there are at least two correlations in an APIM. First, husbands’ and wives’ predictors may be correlated. Second, the residual nonindependence in outcome scores is represented by the correlation between the error terms in husbands’ and wives’ outcomes. This second correlation represents the nonindependence not explained by the APIM. Hypotheses were tested with SEM techniques and Mplus software (Muthén & Muthén, 2006) with maximum likelihood estimation. SEM facilitated the simultaneous modeling of all variables (albeit with some statistical constraints, i.e., model identification; for a discussion, see Bollen, 1989), which allowed us to use APIM and to model a variable simultaneously as an outcome and as a predictor (Olsen & Kenny, 2006). We estimated growth trajectories of the longitudinal variables using latent growth modeling. This statistical procedure uses variables measured over time to develop a latent intercept and a latent slope variable for each longitudinal variable (i.e., physical aggression and chronic stress). The intercepts were modeled at the midpoint of the assessment.
period and provided a reference of average level for an individual’s trajectory of change over time, whereas the slope represented an individual’s pattern of linear change over time. The latent intercepts and slopes are linked to the occasion-based measures for dyad members through model-specific factor loading. SEM allows estimation of the average value of the intercepts and slopes as well as the degree of variability in the intercepts and slopes among individuals. Once a model is deemed to fit the data adequately, parameter estimates can be interpreted. Goodness-of-fit measures used in the present study were the model chi-square statistic (nonsignificant at $p < .05$), the incremental fit index (IFI > .90; Bollen, 1989), and the root-mean-square error of approximation (RMSEA < .10; Kline, 2005).

Results

Descriptive and Preliminary Analyses

During the first 3 years of marriage, 44% of husbands, 54% of wives, and 62% of couples were physically aggressive during marital conflict; spouses’ prevalence rates ranged from 20% to 38% across the four time points (see Table 1). Using Straus et al.’s (1996) categories, if either respondent endorsed any moderate item, we classified the spouse as moderately aggressive. If either respondent endorsed any severe item, the spouse was classified as severely aggressive. If both types of items were endorsed, the spouse was classified as severely aggressive. The most frequent behaviors endorsed were moderately aggressive acts, such as pushing, grabbing, and slapping; however, 41% of aggressive husbands and 60% of aggressive wives engaged in severely aggressive acts. On average, aggressive husbands and wives had engaged in five to six acts of physical aggression in the 6 months prior to each assessment (see Table 2). The majority of the aggression was mutual (both spouses were aggressive), and both husbands and wives reported greater frequency of aggressive behavior for wives; however, this gender difference was significant only at Time 1, $t(201) = 2.79$, $p < .01$. Levels of personality traits and chronic stress were in the expected ranges (low-to-moderate levels), and husbands scored significantly higher on antisocial personality traits than did wives, $t(201) = 3.70$, $p < .01$.

We conducted an inverse transformation on physical aggression scores (and added $+1$ because some participants’ original scores equaled 0), and this greatly improved the distributions. Once transformed, greater physical aggression was indicated by relatively lower scores. Interspousal correlations were small for personality variables, moderate for stress, and moderate to high for physical aggression (see Table 3). Within-spouse correlations were uniformly small to moderate in size. This indicated that these variables were related but were sufficiently distinct to support their investigation as separate constructs.

Measurement Models

Next, we estimated three SEM measurement models. For the first two models, we estimated growth curves for each of the time-varying variables (i.e., physical aggression and stress) in order to examine (a) whether there was systematic, average linear change in either of these variables and (b) whether there was significant variability for each of the parameters (i.e., intercepts and slopes) to warrant prediction of these parameters. In Model 1 we included husbands’ and wives’ time-varying chronic stress, and in Model 2 we included husbands’ and wives’ time-varying physical aggression. All intercepts and slopes were allowed to covary. Both models fit the data very well: chronic stress, $\chi^2(22, N = 103) = 21.04, p = .52$, IFI = 1.0, RMSEA = .00; physical aggression, $\chi^2(22, N = 103) = 18.07, p = .45$, IFI = 1.0, RMSEA = .01. The variance components for all parameters were significant for both spouses; this suggested that it was appropriate for us to interpret and attempt to predict the parameter estimates. For chronic stress, the variance estimates were .64 ($SE = .10$) for husbands’ intercepts and .53 ($SE = .08$) for wives’ intercepts and .01 ($SE = .006$) for husbands’ slopes and .01 ($SE = .05$) for wives’ slopes ($ps < .05$). For physical aggression, the variance estimates were .05 ($SE = .01$) for husbands’ intercepts and .005 ($SE = .002$) for wives’ intercepts and .06 ($SE = .01$) for husbands’ slopes and .01 ($SE = .004$) for wives’ slopes ($ps < .01$).

In Model 3, we tested the adequacy of the measurement model that included all variables of interest. Husbands’ and wives’ time-varying stress and aggression were specified, so that there were four latent variables for husbands and four latent variables for wives (i.e., stress intercepts, stress linear slopes, aggression intercepts, and aggression linear slopes). Personality variables were modeled as six observed variables: husbands’ and wives’ impulsivity, manipulativeness, and aggressiveness. The latent variables and observed variables were allowed to covary within and between spouses. The model was an adequate fit for the data, $\chi^2(142, N = 103) = 225.95, p < .01$, IFI = .92, RMSEA = .07.

Stress \rightarrow aggression and aggression \rightarrow stress. The VSA model as originally published (Karney & Bradbury, 1995) is nonrecursive and therefore underidentified when specified in its entirety. To test all of the VSA paths of interest in our study, we could include only one of these two paths (aggression \rightarrow stress or stress \rightarrow aggression). To guide this decision, we ran two more models—one testing Path A (stress \rightarrow aggression, Model 4) and one testing Path E (aggression \rightarrow stress, Model 5)—and compared each of these models to our final measurement model (Model 3, in which stress and aggression linear slopes were modeled as covariances rather than as directional paths). Model 4 produced a marginally significant reduction in model fit, $\chi^2(10, N = 103) = 17.05, p = .07$, whereas Model 5 did not, $\chi^2(10, N = 103) = 9.41, p = .49$. We also examined the four individual paths in Models 4 and 5 (e.g., in Model 4, changes in husbands’ and wives’ stress predicting changes’ in husbands’ and wives’ aggression). Two of these four paths were significant in Model 4, whereas none of these paths were significant in Model 5. In sum, associations between changes in stress and changes in aggression were best represented by a model in which changes in stress predicted changes in physical aggression (Path A) rather than one in which changes in physical aggression predicted changes in stress (Path E).

2 Mean number of aggressive acts over a 6-month period was calculated based on the midpoints of ranges (e.g., 3–5 acts are coded as a 4; Straus et al., 1996) and, therefore, should be considered estimates.
Testing the Relevant Components of the VSA Model

Physical aggression slopes were regressed onto stress slopes, and all of the parameters for stress and physical aggression were regressed onto the personality predictors (impulsivity, manipulativeness, and aggressiveness; Model 6). Personality variables were allowed to covary both within and between spouses. The model was found to fit the data adequately, \(\chi^2(187, N = 103) = 290.65, p > .001, \text{IFI} = .91, \text{RMSEA} = .08 \). We were able to explain 17% and 31% of the variance in husbands’ and wives’ average levels of stress (intercepts), respectively; we did not explain a significant proportion of the variance in spouses’ stress slopes. We explained 20% and 15% of the variance in husbands’ and wives’ average physical aggression, respectively, and explained 50% and 24% of the variance in husbands’ and wives’ physical aggression slopes, respectively. (See Figure 2 for a visual depiction of all significant paths in this model).

Path A: Stress \(\rightarrow \) aggression. Changes in stress predicted changes in physical aggression for husbands (\(\gamma = -.54, SE = .27, p < .05 \)) and for wives (\(\gamma = -1.25, SE = .55, p < .05 \)), even after controlling for the effects of personality on stress and on physical aggression. Husbands’ and wives’ paths did not differ significantly: nested chi-square, \(\chi^2(1, N = 103) = 1.79, p = .18 \). Cross-spouse paths were not significant. Further, husbands’ physical aggression intercepts correlated significantly with wives’ physical aggression slopes (\(r = -.27, p < .05 \)); to the extent that husbands were more physically aggressive on average, their wives became increasingly physically aggressive over time.

Path B: Personality traits \(\rightarrow \) physical aggression. We present the significant paths for predictors of husbands’ and wives’ physical aggression intercepts and wives’ physical aggression slopes. First, husbands’ trait aggressiveness and impulsivity predicted husbands’ physical aggression intercepts; to the extent that husbands had more aggressive and impulsive personalities, they were more physically aggressive with their wives (\(\gamma = -0.3, SE = .01, \) and \(\gamma = -0.1, SE = .01, \) respectively; \(ps < .01 \)). Second, wives’ physical aggression intercepts were predicted by husbands’ trait aggressiveness (\(\gamma = -0.4, SE = .01, p < .01 \)) and by wives’ impulsivity (\(\gamma = -0.3, SE = .01, p < .01 \)); wives who were more physically aggressive toward their husbands had more impulsive personalities and were married to husbands with more aggressive personalities. Third, wives’ trait aggressiveness predicted wives’ physical aggression slopes; wives with more aggressive personalities became increasingly physically aggressive toward their husbands over time (\(\gamma = -0.2, SE = .01, p < .05 \)).

We conducted nested chi-square tests to explore potential gender differences. First, we compared significant predictors of husbands’ and wives’ physical aggression intercepts. We set the paths significantly predicting husbands’ physical aggression intercepts (husbands’ trait aggressiveness and impulsivity) equal to the paths significantly predicting wives’ physical aggression intercepts (husbands’ trait aggressiveness and wives’ impulsivity). These constraints did not produce a significant drop in model fit, \(\chi^2(3, N = 103) = 4.1, p = .25 \), so there was no evidence of gender differences. Next, wives’ trait aggressiveness predicted wives’ physical aggression slopes, but husbands’ trait aggressiveness did not predict husbands’ physical aggression slopes; however, that difference does not necessarily imply a significant gender difference in these associations. We examined whether that path was significantly stronger than the same path for husbands. To examine whether this gender difference was significant, the within-spouse effects of trait aggressiveness on physical aggression slopes were constrained to equality. The constraints did not yield a significant reduction in model fit, \(\chi^2(1, N = 103) = 1.58, p = .21 \), so there was no evidence of a gender difference.

Table 1
Descriptives of Husbands’ and Wives’ Physical Aggression Over the First 3 Years of Marriage

<table>
<thead>
<tr>
<th>Variable</th>
<th>At each time point</th>
<th>Aggregated across time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Husbands</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>Wives</td>
<td>38</td>
<td>27</td>
</tr>
<tr>
<td>Couples</td>
<td>42</td>
<td>31</td>
</tr>
</tbody>
</table>

Note. All data are percentages. Any = engaged in any aggressive act; moderate = engaged in only moderately aggressive acts; severe = engaged in any severely aggressive act; H→W = unidirectional husband-to-wife aggression; W→H = unidirectional wife-to-husband aggression; H↔W = both partners were aggressive.

Table 2
Mean Aggression Scores Among Physically Aggressive Spouses

<table>
<thead>
<tr>
<th>Time</th>
<th>Husbands</th>
<th>Wives</th>
<th>t(103)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 1 (3–6 months)</td>
<td>2.58</td>
<td>4.72</td>
<td>-2.788</td>
</tr>
<tr>
<td>Time 2 (12–15 months)</td>
<td>4.50</td>
<td>6.12</td>
<td>-1.855</td>
</tr>
<tr>
<td>Time 3 (21–24 months)</td>
<td>4.93</td>
<td>5.02</td>
<td>-1.299</td>
</tr>
<tr>
<td>Time 4 (30–33 months)</td>
<td>8.05</td>
<td>6.72</td>
<td>-1.63</td>
</tr>
</tbody>
</table>

* \(p < .05 \).
Table 3
Bivariate Correlations Among Husbands’ and Wives’ Predictors and Outcomes

<table>
<thead>
<tr>
<th>Wives’ variables</th>
<th>ASPD</th>
<th>IMP</th>
<th>MNP</th>
<th>AGG</th>
<th>Stress 1</th>
<th>Stress 2</th>
<th>Stress 3</th>
<th>Stress 4</th>
<th>PA1</th>
<th>PA2</th>
<th>PA3</th>
<th>PA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personality</td>
<td></td>
</tr>
<tr>
<td>ASPD</td>
<td>.15</td>
<td>.55**</td>
<td>.49**</td>
<td>.56**</td>
<td>.18</td>
<td>.35**</td>
<td>.23</td>
<td>.31**</td>
<td>.20</td>
<td>.18</td>
<td>.44**</td>
<td>.65**</td>
</tr>
<tr>
<td>IMP</td>
<td>.60**</td>
<td>-.20</td>
<td>.38**</td>
<td>.46**</td>
<td>.14</td>
<td>.18</td>
<td>.19</td>
<td>.26</td>
<td>.14</td>
<td>.16</td>
<td>.20</td>
<td>.17</td>
</tr>
<tr>
<td>MNP</td>
<td>.40**</td>
<td>.34**</td>
<td>.19</td>
<td>.57**</td>
<td>.29**</td>
<td>.36**</td>
<td>.30**</td>
<td>.39**</td>
<td>.10</td>
<td>.28</td>
<td>.22</td>
<td>.19</td>
</tr>
<tr>
<td>AGG</td>
<td>.36</td>
<td>.24</td>
<td>.22**</td>
<td>.03</td>
<td>.27**</td>
<td>.36**</td>
<td>.41**</td>
<td>.40**</td>
<td>.14</td>
<td>.26</td>
<td>.37**</td>
<td>.36**</td>
</tr>
<tr>
<td>Chronic stress</td>
<td></td>
</tr>
<tr>
<td>Time 1</td>
<td>.16</td>
<td>.10</td>
<td>.11</td>
<td>.26**</td>
<td>.22**</td>
<td>.57**</td>
<td>.64**</td>
<td>.63**</td>
<td>.27</td>
<td>.13</td>
<td>.11</td>
<td>.01</td>
</tr>
<tr>
<td>Time 2</td>
<td>.22</td>
<td>.13</td>
<td>.32**</td>
<td>.28</td>
<td>.71**</td>
<td>.29**</td>
<td>.76**</td>
<td>.72**</td>
<td>.19</td>
<td>.12</td>
<td>-.02</td>
<td>.02</td>
</tr>
<tr>
<td>Time 3</td>
<td>.27</td>
<td>.18</td>
<td>.08</td>
<td>.51**</td>
<td>.65**</td>
<td>.58**</td>
<td>.44**</td>
<td>.71**</td>
<td>.24</td>
<td>.08</td>
<td>.01</td>
<td>-.01</td>
</tr>
<tr>
<td>Time 4</td>
<td>.31**</td>
<td>.18</td>
<td>.21</td>
<td>.36**</td>
<td>.60**</td>
<td>.68**</td>
<td>.39**</td>
<td>.31**</td>
<td>.23</td>
<td>-.02</td>
<td>.06</td>
<td></td>
</tr>
<tr>
<td>Physical aggression</td>
<td></td>
</tr>
<tr>
<td>Time 1</td>
<td>-.02</td>
<td>.12</td>
<td>.32**</td>
<td>.03</td>
<td>.28**</td>
<td>.30**</td>
<td>.19</td>
<td>.27**</td>
<td>.32**</td>
<td>.07</td>
<td>.24**</td>
<td>.31**</td>
</tr>
<tr>
<td>Time 2</td>
<td>.05</td>
<td>.02</td>
<td>.22**</td>
<td>.24</td>
<td>.20</td>
<td>.11</td>
<td>.29**</td>
<td>.15</td>
<td>.09</td>
<td>.89**</td>
<td>.01</td>
<td>.22</td>
</tr>
<tr>
<td>Time 3</td>
<td>.22</td>
<td>.13</td>
<td>.09</td>
<td>.22**</td>
<td>.07</td>
<td>.15</td>
<td>.06</td>
<td>.29**</td>
<td>.28**</td>
<td>.05</td>
<td>.62**</td>
<td>.71**</td>
</tr>
<tr>
<td>Time 4</td>
<td>.37**</td>
<td>.19</td>
<td>.11</td>
<td>.20</td>
<td>.19</td>
<td>.19</td>
<td>.17</td>
<td>.21</td>
<td>.11</td>
<td>.10</td>
<td>.21</td>
<td>.63**</td>
</tr>
</tbody>
</table>

Note. For bivariate correlations, within-husband correlations are above the diagonal; within-wife correlations are below the diagonal; interspousal correlations are along the diagonal and are in bold. ASPD = antisocial personality disorder; IMP = impulsivity; MNP = manipulativeness; AGG = aggressiveness; PA = physical aggression.

*p < .05. **p < .01, two-tailed.

Path C: Personality traits → stress. Husbands’ stress intercepts were positively predicted by husbands’ trait aggressiveness (γ = .11, SE = .04, p < .05), such that husbands with more aggressive personalities experienced more stress on average. Wives’ stress intercepts were positively predicted by husbands’ and wives’ trait aggressiveness (γ = .09, SE = .03, and γ = .17, SE = .03, respectively; ps < .01); to the extent that either husbands or wives had more aggressive personalities, wives experienced more stress on average. We conducted two nested chi-square tests to explore potential gender differences. First, all four paths—the within- and cross-spouse effects of trait aggressiveness on stress intercepts—were constrained to be equal. The constraints

Figure 2. Estimated significant paths between husbands’ and wives’ personality traits, chronic stress, and physical aggression. Nonsignificant paths from the full vulnerability–stress–adaptation (VSA) model are not shown. VSA paths (A, B, or C), standardized regression coefficients, and standard errors are denoted above the corresponding path. All paths were significant at p < .05, one-tailed. Husbands and wives’ manipulativeness are not shown because they did not significantly predict any parameters of stress or physical aggression. PA = physical aggression.
yielded a significant drop in model fit, \(\chi^2(3, N = 103) = 16.90, p = .001 \). Second, we removed the constraint on the one nonsignificant path: wives’ trait aggressiveness on husbands’ stress intercept. The remaining constraints did not result in a reduction in the fit compared with the original model, \(\chi^2(2, N = 103) = 1.15, p = .56 \). In sum, husbands’ trait aggressiveness had a significantly greater impact on wives’ stress than wives’ trait aggressiveness had on husbands’ stress. (Within-spouse effects were also significantly greater than was the cross-spouse effect of wives’ aggressiveness on husbands’ stress.)

Additional analyses for Paths B and C: ASPD \(\rightarrow \) stress and aggression. Finally, we examined whether the effects of personality on stress and physical aggression differed when personality was operationalized as the diagnostic cluster of ASPD rather than in terms of the lower order personality facets we had tested previously. Specifically, we revised Model 6 by removing husbands’ and wives’ impulsivity, aggressiveness, and manipulativeness and adding husbands’ and wives’ ASPD (Model 7). First, we tested the overall fit of the new model and found it to adequately fit the data, \(\chi^2(140, N = 103) = 225.16, p > .001, \text{IFI} = 0.92, \text{RMSEA} = .08 \). Second, we examined whether the new paths were significant. Husbands’ ASPD significantly predicted husbands’ stress intercepts (\(\gamma = .07, SE = .02, p < .01 \)), husbands’ physical aggression intercepts (\(\gamma = -.01, SE = .003, p < .01 \)), and wives’ physical aggression intercepts (\(\gamma = -.01, SE = .01, p < .05 \)). Wives’ ASPD significantly predicted wives’ stress intercepts (\(\gamma = .07, SE = .03, p < .01 \)) and wives’ physical aggression slopes (\(\gamma = -.03, SE = .01, p < .05 \)). Third, we examined the percent of variance accounted for in this new model. The \(R^2 \) values indicated that the post hoc model explained 17% of the variance in husbands’ initial stress and 20% and 24% of the variance in husbands’ and wives’ physical aggression slopes, respectively. However, it did not explain a significant amount of the variance in husbands’ or wives’ physical aggression intercepts, husbands’ or wives’ stress slopes, or wives’ stress intercepts. In sum, the post hoc model demonstrated some predictive utility.

Fourth, to examine whether Model 7 (in which we operationalized personality in terms of the ASPD cluster) was superior to Model 6 (in which we operationalized personality in terms of lower order traits), we compared the confidence intervals of the proportions of variance explained in each of the parameters of interest across the two models. Model 6 explained significantly more variance in husbands’ physical aggression slopes than did Model 7; all other confidence intervals overlapped. These results suggest that the model that used lower order traits was superior for prediction of change in husbands’ physical aggression. In sum, operationalizing personality in terms of the lower order traits yielded more explanatory power than did operationalizing it as ASPD.

Discussion

Summary and Interpretation of Results

Fully 62% of couples (44% of husbands and 54% of wives) in the present sample were physically aggressive over the early years of marriage; this finding is consistent with the prevalence rates of 52% and 57% reported by Lawrence and Bradbury (2001) and O’Leary et al. (1989), respectively. As expected, the majority of the couples engaged in mutual aggression and more wives than husbands were aggressive. Notably, 18% of husbands, 32% of wives, and 36% of couples engaged in severe aggression at some point in the first 3 years of marriage. These rates were higher than those reported in previous studies of newlywed couples (e.g., Lawrence & Bradbury, 2001). However, moderate acts, such as grabbing and pushing, were the most frequent among both husbands and wives, and severe acts were relatively rare by comparison. Consistent with Lawrence and Bradbury (2007), there was significant variability among spouses’ longitudinal courses of aggression over time but no average systematic change over time.

As hypothesized, personality traits were associated with physical aggression for both husbands and wives. Husbands higher in trait impulsivity and trait aggressiveness were more physically aggressive toward their partners on average; these findings were consistent with prior research on male batterers (e.g., Stuart & Holtzworth-Munroe, 2005). With few exceptions, relatively little research has examined these traits in the context of female partner aggression. When we examined the relations between personality and chronic stress, we found that trait aggressive husbands and trait aggressive wives experienced more stress on average but that these traits did not predict changes in stress over time. These findings are consistent with those of cross-sectional studies that have indicated the contribution of personality to stressful circumstances (e.g., Poulton & Andrews, 1992). Our analyses also revealed partner effects of husbands’ personality traits, such that aggressive personality styles of husbands were associated with their wives being more physically aggressive and reporting more chronic stress, on average. Although partner effects have been found for female antisocial behavior predicting male physical aggression (Kim & Capaldi, 2004), few studies have examined the impact of partner personality traits on one’s own physical aggression or stress. As measured in the present study, trait aggressiveness reflects a tendency to be argumentative and hostile, which may increase the likelihood of engaging in verbal aggression or other nonconstructive conflict behaviors. Given this possibility, wives may retaliate with physical aggression during conflicts in which husbands employ such tactics (e.g., hostile communication), and wives may experience greater stress as a result of these interactions.

In sum, the present results suggest that certain personality traits may act as vulnerabilities that render individuals at greater risk for experiencing stress and for engaging in physically aggressive behavior toward their partners. Moreover, there appears to be evidence that husbands’ trait aggressiveness may be particularly detrimental to wives; however, future research should replicate and further expand on the current findings. Finally, trait manipulativeness was not associated with physical aggression for husbands or wives. Given that manipulativeness is a trait underlying psychopathy, it is possible that this trait is associated with severe battering violence and would not be a strong predictor of the situational
couple violence that characterized the current sample (e.g., Johnson & Leone, 2005).

We found support for the hypothesis that increases in chronic stress would predict increases in physical aggression perpetration in the present study, which was the first examination of the influence of changes in stress on changes in physical aggression over time. Notably, there was strong evidence for this within-spouse association among both husbands and wives. The experience of chronic stress demands more emotional resources, and individuals under increased strain may have greater difficulty employing adaptive behaviors (e.g., active listening techniques) during couple interactions. Our statistical approach allowed us to rule out the possibility that the links between stress and physical aggression were artifacts of the underlying maladaptive personality traits included in the present study. We were also able to demonstrate that the links between stress and physical aggression were generally unidirectional; none of the paths in which physical aggression predicted stress were significant. However, no longitudinal studies to date have documented this link between stress and physical aggression, and specific mechanisms underlying the associations must be clarified. For example, affect regulation may mediate this association, such that repeated exposure to stress contributes to progressive declines in emotional stability, which in turn reduces one’s threshold for engaging in physically aggressive behavior (Umberson, Williams, & Anderson, 2002). Regardless of whether this association is better accounted for by direct or indirect links, we strongly recommend that future research include a consideration of the role of stress in predicting the developmental course of physical aggression in intimate relationships.

Strengths and Limitations of the Present Study

There are several strengths of the present study. First, we used an established theoretical framework that integrates individual characteristics and stress into the study of dyadic behavior to investigate physical aggression over time. Second, our focus on newly married couples allowed us to study a period of high risk in marriage (Cherlin, 2004); research on established marriages is limited because divorced couples are necessarily left out of these samples (Glenn, 1998). Third, a longitudinal (3-year) design was employed and multiple (four) waves of data were collected. Fourth, data were collected from both husbands and wives, and an APIM was utilized to account for the shared method variance of husband and wife data. Fifth, both self- and partner reports of physical aggression were used to yield a more reliable indicator of aggression. Finally, we tested our hypotheses via SEM techniques; SEM has several advantages as a modeling approach with dyadic data (see Olsen & Kenny, 2006).

There are also several important limitations of the present findings. First, although the longitudinal design allows for statements about temporal order, any causal conclusions should be made with caution. For example, if increases in stress as predictors of increases in physical aggression are established, this does not necessarily mean that an individual will experience an escalation in stress right before he or she engages in physically aggressive behavior. Second, the emphasis placed on the internal rigor in this study (e.g., all heterosexual married couples) is offset by constraints on the generalizability of the findings. For example, as the majority of the sample consisted of Caucasian and well-educated couples, our findings may not be generalizable to other samples of newlywed couples, in particular to severely distressed couples or to spouses engaging in battering violence. Also, we cannot conclude that our results would generalize to same-sex couples or to dating or cohabiting couples. Finally, the self-selected nature of our sample raises the possibility that the decision to take part in the study might reflect characteristics that differ from those of couples who decided not to participate. Third, data were obtained via self-report questionnaires, which are vulnerable to memory distortion and social desirability biases. Although these biases would presumably result in the underreporting of physical aggression, which would render the reported prevalence rates conservative, observational studies may provide a more reliable indicator of aggression by overcoming the biases of self-report data. Fourth, although we removed the item relevant to marital stress on the measure of chronic stress and controlled for several personality traits, it is possible that our measure of stress did not allow us to truly isolate chronic stress that is external to the relationship and external to the individual.

A final limitation of the study relates to the exclusive focus on individual characteristics (personality and stress) of each partner and on one dyadic process (physical aggression). We chose to take a parsimonious approach to investigation of physical aggression within the context of the VSA model; however, this approach means that we have not fully explicated the longitudinal course of physical aggression in marriage. Other researchers have suggested that examining episodic interactions (e.g., Linder & Collins, 2005) and day-to-day fluctuations in relationship dynamics (e.g., Schumacher & Leonard, 2005) will allow us to understand the nature of physical aggression more fully over time. Predictive accuracy will be enhanced to the extent that future studies include measures of other contextual factors and of adaptive and maladaptive processes (such as psychological aggression or poor problem-solving skills) not tested here that may significantly affect the course of physical aggression in marriage.

Implications for Research, Theory, and Couple Therapy

The results of the present study have several implications for explication of the role of personality in the context of intimate partner aggression. Although ASPD has emerged as instrumental in the development of partner aggression for both sexes (e.g., Capaldi & Owen, 2001), there are several reasons to consider the role of lower order personality traits. Often, Axis II diagnostic categories lack reliability, share diatheses, and are manifested heterogeneously (e.g., Widiger & Samuel, 2005). There is also evidence that similar personality traits manifest themselves differently—and lead to different behaviors—in men and women; thus, they yield different diagnoses (Paris, 1997). Furthermore, the results of the current study, as well as evidence that specific underlying trait dimensions may distinguish different types of domestic violence (e.g., Swogger, Walsh, & Kosson, 2007), provide support for the potential use of lower order traits in prediction of intimate partner aggression. In sum, the above research converges to suggest that the examination of lower order personality traits may be more reliable and may yield greater explanatory power than does the examination of diagnostic categories and thus should be included in future research on personality and partner aggression.
From a theoretical standpoint, the current study provides evidence of physical aggression as a process resulting from personality traits and chronic stress. This evidence lends support to our argument for the embedding of aggression research within a VSA framework. We recommend further specification of this model and suggest several issues for future research. First, the novel findings regarding changes in chronic stress and physical aggression suggest that the examination of facets of stress beyond those assessed in the current study (e.g., acute stress) may elucidate this putative longitudinal association. Second, given the emerging evidence that psychological aggression is a strong predictor of psychopathology (e.g., Taft et al., 2006) and of physical aggression (e.g., O’Leary et al., 1994), the examination of this maladaptive process in the VSA model would improve our understanding of the marital context in which physical aggression emerges and continues. Finally, an integration of the current findings on distal predictors of physical aggression with the inclusion of proximal predictors of aggression, such as alcohol use, would likely provide information about particular situations in which at-risk couples might be particularly likely to experience physical aggression.

In terms of clinical implications, current violence intervention programs present two main problems for the treatment of intimate partner violence. First, the limited efficacy of batterers’ programs in general suggests that there is a need for refinement of existing treatments and/or development of new treatments (Babcock et al., 2004). Second, most intervention programs were developed on the basis of research that examined models of male violence (e.g., the Duluth model; Pence & Paymar, 1993); this limits our confidence in the application of these same programs to the treatment of female partner aggression. Moreover, the evidence that the behaviors of both partners contribute to the risk of clinically significant partner aggression, regardless of whether one or both are perpetrators (e.g., Capaldi & Owen, 2001), suggests that treatment of both partners may be a viable alternative or complement to interventions that target one partner. Thus, one option is to focus our attention and resources on enhancing existing couple therapies to more effectively treat intimate partner aggression.3

As personality traits are a risk factor associated with physical aggression and individual psychopathology, they must be addressed in the treatment of men’s and women’s partner aggression, regardless of whether treatment is conjoint or sex specific. We recommend an evaluation of spouses’ personality traits to aid in treatment planning and to identify obstacles that may emerge during the therapeutic process. Moreover, men’s and women’s personality may be differentially associated with severity of partner violence. For example, Ehrensaft et al. (2004) suggested that women’s psychopathology may be predictive of moderate forms of partner aggression, whereas men’s psychopathology may be predictive of severe partner violence. Furthermore, the evidence from clinical studies that the personality characteristics of physically violent men tend to be more deviant than are those of physically violent women provides further indication that men’s psychopathology should be considered carefully.

Many forms of specialized individual therapy have been developed for the treatment of personality disorders, and there is growing interest in the implications for couple therapy (e.g., Magnavita, 2000). Different personality traits are connected with different characteristics that influence perceptions of interpersonal relationship-ships and present unique therapeutic obstacles (e.g., Bender, 2005). The identification of traits associated with emotional and behavioral dysregulation may provide a basis for the use of specific techniques to target physical aggression. For example, impulsive and (trait) aggressive individuals should be encouraged to identify problematic behavioral urges and to identify when these urges are most likely to occur in their own lives (Black, Blum, Pfohl, & St. John, 2004). Techniques to reduce reactivity and promote empathy would be useful (e.g., teaching partners to respect and validate one another by listening, reflecting, and/or responding with compassion; Goldman & Greenberg, 2006). It is common for individuals with more aggressive or impulsive personalities to experience difficulties with trust and closeness; thus, the development of emotional awareness, accurate expression of emotion, and nonjudgmental self-disclosure within a supportive therapeutic environment may be helpful for these individuals (Magnavita, 2000).

Regardless of the specific techniques employed to treat personality traits as precursors to physical aggression in intimate relationships, it is widely known that personality disorders are among the most difficult psychological problems to treat with psychotherapy. In contrast, there are highly effective therapies for stress reduction and stress management, which are the other key precursor to intimate partner aggression that we have identified in the present study. Consequently, couple therapies that target physical aggression in intimate relationships might be more effective to the extent that the aggression is linked to stress rather than to personality traits.

Therefore, the assessment of stress and perceived impact of stressors may help determine whether stress management should be a component of couple therapy when physical aggression is present. Targeting chronic stress in particular may be a useful therapeutic intervention because of its continuous presence (Karney et al., 2005) and its connection to changes in physical aggression perpetration over time. Spouses can be taught simple techniques that can be practiced outside of the therapeutic context, such as progressive muscle relaxation to decrease physiological arousal and meditation to reduce stress reactivity (e.g., Rausch, Gramling, & Auerbach, 2006). Emphasis on individual self-care and the use of available sources of social support to cope with demands external to the marriage should also be part of stress management treatment. Finally, working on stress reduction as a couple may help reduce the reciprocity of dysfunctional behaviors that serve to keep couples in this cycle of negativity and physical aggression. Moreover, teaching these techniques within the context of couple therapy may promote “unified detachment” or a “shared platform” for the couple, a treatment goal that has already been shown to be effective in couple therapies (i.e., integrative therapy).

3 Before beginning conjoint therapy with a couple experiencing physical aggression, an evaluation should be conducted to determine whether conjoint therapy is appropriate. If the aggression is severe enough to warrant medical treatment or if one spouse is fearful of participating in treatment with his or her partner, couple therapy may be contraindicated. If the partners plan to stay together and both partners commit to treatment, couple therapy may have advantages over traditional interventions and over none at all (O’Leary, 1996).
behavioral couple therapy; Christensen et al., 2004; collaborative couple therapy; Wile, 1995).

References