Brainstem and Hypothalamic Regulation of Sleep Pressure and Rebound in Newborn Rats

William D. Todd, James L. Gibson, Cynthia S. Shaw, and Mark S. Blumberg
University of Iowa

Sleep pressure and rebound comprise the two compensatory or “homeostatic” responses to sleep deprivation. Although sleep pressure is expressed by infant rats as early as postnatal day (P)5, sleep rebound does not appear to emerge until after P11. We reexamined the developmental expression of these sleep-regulatory processes in P2 and P8 rats by depriving them of sleep for 30 min using a cold, arousing stimulus delivered to a cold-sensitive region of the snout. This method effectively increased sleep pressure over the 30-min period (i.e., increases in the number of arousing stimuli presented over time). Moreover, sleep rebound (i.e., increased sleep during the recovery period) is demonstrated for the first time at these ages. Next, we showed that precocillar transections in P2 rats prevent sleep rebound without affecting sleep pressure, suggesting that the brainstem is sufficient to support sleep pressure, but sleep rebound depends on neural mechanisms that lie rostral to the transection. Finally, again in P2 rats, we used c-fos immunohistochemistry to examine neural activation throughout the neuraxis during sleep deprivation and recovery. Sleep deprivation and rebound were accompanied by significant increases in neural activation in both brainstem and hypothalamic nuclei, including the ventrolateral preoptic area and median preoptic nucleus. This early developmental expression of sleep pressure and rebound and the apparent involvement of brainstem and hypothalamic structures in their expression further solidify the notion that sleep–wake processes in newborns—defined at these ages without reference to state-dependent EEG activity—provide the foundation on which the more familiar processes of adults are built.

Keywords: development, c-fos, active sleep, sleep homeostasis, infant

Editor’s Note. Joseph S. Lonstein served as the action editor for this article.—MSB
chilled metal spatula to the snout immediately above the mouth whenever nuchal atonia is detected; this region contains a high density of cold receptors (Dickenson, Hellon, & Taylor, 1979). Most important, the stimulus does not interfere with the EMG signal, thereby allowing verification of the loss of sleep throughout the deprivation period. We found that P2 and P8 rats exhibit increased sleep pressure and, surprisingly, sleep rebound as well. We also found that sleep pressure and rebound are modulated by dissociable neural mechanisms as early as P2, as precollicular transections abolish sleep rebound but not pressure. Finally, to determine which areas of the brain are activated at P2 during sleep deprivation and rebound, we performed c-fos immunohistochemistry, a method for detecting neural activation that has been used in similar studies of sleep regulation in adults (Gvilia, Xu, McGinty, & Szymusiak, 2006; Tononi & Cirelli, 2001).

Materials and Method

All experiments were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee of the University of Iowa. All efforts were made to minimize the number of rats used.

Subjects

A total of 72 P2 (n = 60) and P8 (n = 12) Sprague–Dawley Norway rats (Rattus norvegicus) from 25 litters were used. Males and females were equally distributed among experimental groups and ages. When littermates were used, they were always assigned to different experimental groups. All pups were housed with their mother in the animal colony at the University of Iowa. Litters were culled to 8 pups within 3 days of birth (day of birth = Day 0). Mothers and litter were housed in standard laboratory cages (48 × 20 × 26 cm) and received food and water ad libitum. All rats were maintained on a 12-hr light–dark cycle, with lights on at 0700. All tests were performed during the lights-on phase to minimize possible circadian effects.

Experiment 1: Effects of Sleep Deprivation on Pressure and Rebound

Surgery. Twelve P2 (body weights: 7.0–9.3 g) and 12 P8 (body weights: 15.7–23.8 g) rats were used. Under isoflurane anesthesia, bipolar stainless steel hook electrodes (50 um diameter; California Fine Wire, Grover Beach, CA) were implanted bilaterally in the nuchal muscle and secured with flexible collodion. The pup was then placed on a felt pad, secured to polyethylene mesh in a supine position, and lightly restrained with soft pipe cleaners placed over the thorax and abdomen. A hole in the felt pad allowed for the passage of EMG wires. This positioning allowed for easy application of the arousing stimulus. The pup was then transferred into the testing chamber and allowed 45 min to recover and acclimate.

Apparatus. The testing environment consisted of an electrically shielded, double-walled glass chamber (height = 17 cm, i.d. = 12.5 cm) with a Plexiglas lid. An access hole in the side of the chamber allowed for the passage of humidified air (flow rate: 300 ml/min) and nuchal EMG electrodes, and an opening in the lid allowed for presentation of the arousing stimulus. Heated water circulated through the walls of the chamber to maintain air temperature at approximately 35 °C, which is within the thermoneutral range for pups at these ages (Blumberg, 2001; Spiers & Adair, 1986).

Procedure. The deprivation method consisted of the gentle application of a cold, metal spatula to the snout immediately above the mouth in a region that is highly sensitive to cold stimulation (see Figure 1A). The stimulus was applied whenever the subject exhibited electrographic and behavioral signs of sleep, including nuchal atonia, behavioral quiescence (i.e., absence of high-
amplitude movements), or myoclonic twitching (Karlsson, Gall, Mohns, Seelke, & Blumberg, 2005; Seelke & Blumberg, 2008). Application of the spatula was repeated as often as necessary to maintain wakefulness. Spatulas were chilled in a beaker of ice water before each application. The water temperature in the beaker ranged from 4 °C to 7 °C. To record the number of stimulus presentations during the deprivation procedure, each application was keyed into the data acquisition system simultaneously with its occurrence.

Each test consisted of four consecutive 30-min periods: a baseline period, a deprivation period, and two successive recovery periods. During the baseline and recovery periods, pups were allowed to cycle undisturbed between sleep and wakefulness while EMG data were recorded. Same-sex littermates, serving as control subjects, were prepared identically except they were allowed to cycle undisturbed between sleep and wakefulness throughout all four 30-min periods.

Data analysis. Nuchal EMG data were analyzed as described previously (Blumberg, Seelke, Lowen, & Karlsson, 2005; Karlsson et al., 2005; Seelke & Blumberg, 2008). Briefly, EMG signals were digitized at 2 kHz, integrated, and full-wave rectified using a data acquisition system (BioPac Systems, Inc., Santa Barbara, CA). The records were then dichotomized into bouts of sleep and wakefulness as follows: For each rat, the amplitudes of five 1-s segments of both atonia and high tone were averaged and the midpoint between the two was determined. Periods of at least 1 s in which muscle tone was below this point were defined as atonia (indicative of sleep), and those above were defined as high tone (indicative of wakefulness).

Mean sleep and wake durations for each pup were determined for each 30-min period of the experiment by dividing the subject’s total amount of time spent in both states by the total number of sleep–wake cycles during that period, with one cycle being defined as a sleep bout and its succeeding wake bout. For analysis of sleep pressure, the number of stimulus presentations was quantified for the six continuous 5-min segments during the 30-min deprivation period.

All data were imported into Statview 5.0 (SAS, Cary, NC), and a repeated measures analysis of variance (ANOVA) was performed to test for group effects. When appropriate, paired t tests (within-subject or between-littermates) were used for post hoc analysis. Alpha was set at .05.

Experiment 2: Effect of Precollicular Decerebration on Sleep Pressure and Rebound

Subjects and surgery. Twenty-four P2 rats (body weights: 6.9–9.6 g) were used. Pups were prepared in the same manner as in Experiment 1. After surgery and acclimation, each subject was allowed 30 min of undisturbed baseline recording followed by 30 min of sleep deprivation (see Figure 1B). Four same-sex littermates were each assigned to one of four experimental groups: Deprivation, Recovery, Sham Deprivation, and Sham Recovery. Pups assigned to the Deprivation group were killed 90 min after the end of the deprivation period, thus providing sufficient time for the expression of c-fos and the production of the Fos protein (Cirelli & Tononi, 2000; Morgan & Curran, 1991). Pups assigned to the Recovery group were killed 150 min after the deprivation period, that is, 90 min after the end of the 60-min sleep recovery period. The two control littermates (i.e., Sham Deprivation and Sham Recovery) were killed at one of these two times after being left undisturbed throughout the test. In counterbalanced fashion, littermates assigned to each of the four groups were tested in pairs at P2 and P3.

Immunohistochemistry. Animals were killed with an overdose of Nembutal and perfused transcardially with PBS followed by 4% paraformaldehyde. Brains were removed and postfixed overnight in 4% paraformaldehyde before being transferred to 30% sucrose solution. Using a freezing microtome, 40 μm coronal sections were cut and placed in wells with PBS.

Sections were pretreated with normal goat serum for 1 hr, rinsed with PBS, and then incubated at room temperature overnight in a primary antibody solution (1:2000, sc-7202, in .01 M PBS and 0.3% Triton X; Santa Cruz Biotechnology, Santa Cruz, CA). The next day, the sections were thoroughly rinsed with PBS and then incubated at room temperature in a biotinylated goat anti-rabbit IgG secondary antibody (1:200; Vector Laboratories, Burlingame, CA) for 1 hr in .01 M PBS and 0.3% Triton X. After rinsing with PBS, tissues were reacted with an avidin-biotin peroxidase complex (Vector Laboratories) for 1 hr. The sections were again rinsed with PBS before reaction with 0.02% diaminobenzidine solution with 30% hydrogen peroxide added just before the reaction. The reaction was terminated with PBS. Sections were mounted and coverslipped with Depex.
Analysis. Images of brain sections were captured at 20× magnification using a Leica DM/LS microscope and imaging system. Images were imported into ImageJ (National Institutes of Health, Bethesda, MD) and adjusted to binary values. Using methods similar to those described elsewhere (Na, Morris, Johnson, Beltz, & Johnson, 2007), cells positive for Fos immunoreactivity (Fos-ir) were identified as comprising 20–200 pixels. For each subject, one section from each area was selected for analysis, and Fos-ir positive cells were counted unilaterally. A counting box of known dimensions was placed around each area. To control for sampling area, we divided the number of cells within a given section by the surface area of the counting box, providing an estimate of the number of active cells per mm². Brain nuclei were identified using a stereotaxic atlas of the rat brain (Paxinos & Watson, 1998). Although cell bodies were not counterstained, nuclei were determined on the basis of adjacent anatomical structures (e.g., ventricles, optic chiasm), as described by others using similar methods (Gong et al., 2004; Gvilia, Turner, McGinty, & Szymusiak, 2006; Verret, Leger, Fort, & Luppi, 2005). After examination of the entire brain for evidence of Fos labeling, we confirmed that pups at each age received significantly more stimulus presentations during the last 5-min period in relation to the first.

Sleep rebound. Figures 3B and 3C present mean sleep bout duration for each 30-min period for the P2 and P8 subjects, respectively. As expected, at both P2 and P8, the deprivation procedure effectively reduced mean sleep bout duration in the Deprived group in relation to the Control group. An important finding is that, indicative of sleep rebound, mean sleep bout duration increased significantly during the first 30-min recovery period and returned toward baseline levels during the second 30-min recovery period. A repeated measures ANOVA did not reveal significant effects of group at either P2 or P8, but did reveal significant effects of time, \(F(5, 50) = 37.0, p < .001 \), as well as a significant Age × Time interaction, \(F(5, 50) = 8.9, p < .001 \). Post hoc tests confirmed that pups at each age received significantly more stimulus presentations during the last 5-min period in relation to the first.

Results

Experiment 1: Effects of Sleep Deprivation on Pressure and Rebound at P2 and P8

Sleep pressure. Figure 2 presents, for a P2 rat, representative data from the first and last 5 min of the deprivation period. As seen in the figure, subjects returned to sleep more quickly after each stimulus presentation, indicative of increased sleep pressure. In addition, stimulus presentations elicited lower amplitude EMG responses by the end of the deprivation period. This was observed in all subjects and could reflect peripheral sensory adaptation or central changes in sensory threshold. Regardless, after 30 min of deprivation, pups continued to exhibit robust behavioral responses to each orofacial stimulus presentation, indicative of effective arousal and consequent sleep deprivation.

The number of stimulus presentations delivered to the pups throughout the deprivation procedure increased significantly (see Figure 3A). A repeated measures ANOVA did not reveal a significant effect of age, \(F(1, 10) = 0.7 \), but did reveal a significant effect of time, \(F(5, 50) = 37.0, p < .001 \), as well as a significant Age × Time interaction, \(F(5, 50) = 8.9, p < .001 \). Post hoc tests confirmed that pups at each age received significantly more stimulus presentations during the last 5-min period in relation to the first.

Sleep rebound. Figures 3B and 3C present mean sleep bout duration for each 30-min period for the P2 and P8 subjects, respectively. As expected, at both P2 and P8, the deprivation procedure effectively reduced mean sleep bout duration in the Deprived group in relation to the Control group. An important finding is that, indicative of sleep rebound, mean sleep bout duration increased significantly during the first 30-min recovery period and returned toward baseline levels during the second 30-min recovery period. A repeated measures ANOVA did not reveal significant effects of group at either P2 or P8, \(F(1, 10) < 3.0 \), but did reveal significant effects of time, \(F(3, 30) \geq 19.1, ps < .001 \), as well as significant Group × Time interactions, \(F(3, 30) > 20.5, ps < .001 \), at both ages.

Means of mean total sleep time per 30-min period yielded findings that mirror those for mean sleep bout duration (data not shown). A repeated measures ANOVA revealed, at both ages, significant effects of group, \(F(1, 10) > 6.3, ps < .05 \), and time, \(F(3, 30) > 31.8, ps < .0001 \), and significant Group × Time interactions, \(F(3, 30) > 37.4, ps < .0001 \). Mean total sleep time significantly decreased during the deprivation period (Deprived: \(8.4 \pm 0.6 \) min; Control: \(21.9 \pm 1.0 \) min), \(t(5) = 16.0, p < .0001 \), and significantly increased during the first (Deprived: \(26.5 \pm 0.8 \) min; Control: \(23.1 \pm 0.6 \) min), \(t(5) = 3.0, p < .05 \), and second (Deprived: \(25.9 \pm 0.5 \) min; Control: \(22.7 \pm 0.8 \) min), \(t(5) = 5.0, p < .01 \), recovery periods.

Experiment 2: Effect of Precollicular Decerebration on Sleep Pressure and Rebound at P2

Having demonstrated that sleep pressure and rebound can occur as early as P2, we next aimed to determine whether sleep pressure and rebound are dissociable, as has been shown in adults (de Andres, Garzon, & Villalblanca, 2003). Accordingly, we performed precollicular transections at P2 and assessed sleep pressure and rebound using methods identical to those used in Experiment 1.

Sleep pressure. The anterior-to-posterior range of all transections is depicted in Figure 4A. Transections always began dorsally just anterior to the superior colliculus and extended ventrally, terminating between the mammillary and interpeduncular nuclei, similar to previous reports using this procedure (Karlsson, Kreider, & Blumberg, 2004; Mohns et al., 2006). For both Sham + De-
prived and Transected Deprived groups, it was necessary to increase the number of stimulus presentations throughout the deprivation period to maintain arousal (see Figure 4B). A repeated measures ANOVA did not reveal a significant effect of group, \(F(1, 14) = 7.8 \), or a significant Group \(\times \) Time interaction, \(F(5, 50) = 1.3 \), but did reveal a significant effect of time, \(F(5, 70) = 64.5, p < .001 \). Thus, the brainstem alone appears sufficient to support sleep pressure at P2.

Sleep rebound. Figure 4C presents the sleep bout duration data for each 30-min period. Both Sham Deprived and Transected Deprived groups showed a significant decrease in mean sleep bout duration, whereas the Transected Undeprived group did not. Consistent with the results of Experiment 1, the Sham Deprived group exhibited a significant increase in mean sleep bout duration during the recovery period, indicative of sleep rebound. In contrast, the Transected Deprived group failed to show evidence of rebound. A repeated measures ANOVA revealed a significant effect of group, \(F(2, 21) = 7.3, p < .005 \), and a significant effect of time, \(F(3, 63) = 62.8, p < .001 \), as well as a significant Group \(\times \) Time interaction, \(F(6, 63) = 20.6, p < .001 \).

Again, measures of mean total sleep time per 30-min period yielded findings that mirror those for mean sleep bout duration (data not shown). A repeated measures ANOVA revealed a significant effect of group, \(F(2, 21) = 14.4, p < .0001 \), a significant effect of time, \(F(3, 63) = 230.9, p < .0001 \), and a significant Group \(\times \) Time interaction, \(F(6, 63) = 61.4, p < .0001 \). It is important to note that, during the deprivation period, mean total sleep times decreased to less than 8.3 min for the Sham Deprived and Transected Deprived groups, compared with 22.7 min for the Transected Undeprived group. In contrast, mean total sleep time during the first recovery period increased significantly in the Sham Deprived group (25.2 ± 0.6 min) in relation to both the Transected + Deprived (22.7 ± 0.9 min) and Transected + Undeprived (22.0 ± 0.6 min) groups.

Experiment 3: Neural Activation Associated With Sleep Deprivation, Pressure, and Rebound at P2

Experiment 2 showed that precollicular decerebration dissociates sleep pressure and rebound in P2 rats and suggested that brain areas rostral to the transection are necessary for the expression of sleep rebound. Next, using c-fos immunohistochemistry, we examined the activation patterns of specific nuclei in response to sleep deprivation and recovery sleep at P2.

Confirmation of sleep pressure and rebound. As in Experiments 1 and 2, stimulus presentations and sleep bout durations

Figure 3. (A) Mean number of presentations of the arousing stimulus for each 5-min interval of the deprivation period in Experiment 1 for P2 (filled circles) and P8 (open squares) rats. At both ages, the number of presentations increased significantly over the 30-min deprivation period, indicative of sleep pressure. * Significant difference from the first 5-min interval. Mean sleep bout durations of (B) P2 and (C) P8 rats for each 30-min period of the experiment for Control (open circles) and Deprived (filled squares) groups. Mean bout durations were significantly reduced in Deprived subjects during the deprivation period, but significantly increased during the recovery periods, indicative of sleep rebound. * Significant difference from the Control group. All means are presented with standard errors.
were quantified to confirm sleep pressure and rebound, respectively. In all respects, the results were similar to those presented in Experiments 1 and 2.

Cellular activity associated with stimulus presentation. In both Deprivation and Recovery groups (see Figure 1B for timeline of the experiment and definitions of groups), cells expressing the Fos protein were seen in areas that receive projections from the whisker pad and orofacial region, including the primary sensory nucleus of the trigeminal nerve, the ventroposterior medial thalamus, and a highly discrete region within barrel cortex (Petersen, 2007). Sham Deprivation and Sham Recovery groups did not show Fos-ir in these areas.

We quantified Fos-ir in barrel cortex during deprivation and recovery to determine whether levels of Fos protein persisted beyond the period of orofacial stimulation. ANOVA revealed a significant effect of group on Fos-ir, $F(3, 20) = 13.8, p < .001$. It is important to note that, as shown in Figure 5, the Deprivation and Recovery groups exhibited significantly higher Fos-ir than both of the Sham groups. Therefore, the elevated levels of the Fos protein did not return toward baseline during the 1-hr recovery period even though orofacial stimulation had ceased.

Cellular activity associated with sleep pressure and rebound. After surveying the entire brain for evidence of consistent Fos-ir positive cells, we chose 10 nuclei for quantitative analysis. As shown in Figure 5, these nuclei exhibited Fos-ir profiles that clustered into three distinct patterns: wake-related, sleep-related, and state-indifferent. First, indicative of wake-related activity, the LC, LDT, and DMH exhibited significantly higher mean Fos-ir counts in both the Deprivation and Recovery groups in relation to the two Sham groups, $F(3, 20) \geq 13.3, ps < .001$. Second, indicative of sleep-related activity, the PnO, MnPO, and VLPO exhibited significant increases in mean Fos-ir counts in the Recovery group only, $F(3, 20) \geq 9.4, ps \leq .001$; the photomicrographs in Figure 6 illustrate the Fos-ir patterns in the hypothalamus and brainstem for Recovery and Sham subjects. Finally, indicative of state indifference, the SCN, MPA, BF, and PVN did not exhibit any significant differences in mean Fos-ir counts, $F(3, 20) \leq 2.2$.

Discussion

Here, we report for the first time in rats that, in addition to sleep pressure, sleep rebound is expressed in early infancy. In addition, we show that sleep pressure and rebound are dissociable, as precollular decerebrations abolish rebound but not pressure at P2. Finally, at P2, we show that deprivation-induced wakefulness and recovery sleep are associated with differential Fos-ir in brainstem and hypothalamic structures. In previous studies in infant rats (Blumberg et al., 2004) and newborn marmoset monkeys (Berger & Meier, 1966), it was suggested that the failure to find evidence of sleep rebound might be due to insufficient neural circuitry or to a ceiling effect whereby sleep durations could not be increased further. The present results obviate the need for either explanation in the case of infant rats.

Our method of deprivation—which entailed the application of a cold stimulus to a thermally sensitive region of the snout—proved reliable and effective. In contrast with electric shock (Berger & Meier, 1966; Blumberg et al., 2004), in which stimulus intensity must be increased over time to maintain arousal, the delivery of the
cold stimulus to the snout—and the subsequent activation of the trigeminal system—evoked robust behavioral arousal throughout the 30-min deprivation period. It is important that this method did not prevent the continuous measurement of nuchal EMG during the deprivation period, thus allowing us to confirm the effectiveness of the sleep deprivation protocol.

Under ideal circumstances, a yoked control group would have been included to control for all aspects of the sleep deprivation procedure (Rechtschaffen, Gilliland, Bergmann, & Winter, 1983). However, such a yoking procedure was not possible in the present study because of the disproportionately long sleep periods and rapid sleep–wake cycling characteristic of early infancy (Blumberg et al., 2004, 2005); in other words, yoked-control pups would unavoidably experience nearly as much sleep deprivation as would sleep-deprived pups. Thus, in the absence of such a control group, it remains possible that stress associated with some aspect of the sleep deprivation procedure contributed to the present findings.

First, it should be noted that any stress associated with maternal separation is unlikely to have been a factor here, as even 8 hr of maternal separation at thermoneutrality in P8 rats does not significantly alter sleep–wake organization (Seelke & Blumberg, 2005).

Second, we examined Fos-ir in the PVN, a nucleus that exhibits increased corticotropin-releasing hormone immunoreactivity in response to sleep deprivation in adult rats (Galvao Mde, Sinigaglia-Coimbra, Kawakami, Tufik, & Suchecki, 2009) and increased c-fos mRNA levels in P12 rats when mildly stressed with a saline injection (Smith, Kim, van Oers, & Levine, 1997). As shown in Figure 5, we found no evidence of increased Fos-ir in the PVN in response to sleep deprivation.

Although we did not differentiate between active sleep (AS) and quiet sleep (QS) in this study, it is known that infant rats spend the majority of their time in AS (Gramsbergen, Schwartz, & Prechtl, 1970; Jouvet-Mounier, Astic, & Lacote, 1970; Seelke & Blumberg, 2008). It is interesting that, in adult rats, total sleep deprivation results in significant AS and QS rebounds, with the former exhibiting relatively greater rebound than the latter (Everson et al., 1989; Rechtschaffen et al., 1983). Therefore, we suspect that total sleep deprivation in infants results in recovery sleep that is composed largely of AS.

It is interesting that sleep pressure increases significantly within only 30 min in infants. Similar procedures in adults typically require hours or days to produce detectible increases in sleep pressure (Borbely & Achermann, 1999; Ocampo-Garces, Molina, Rodriguez, & Vivaldi, 2000; Rechtschaffen & Bergmann, 1995). Whereas infants spend the majority of their time asleep, their sleep bouts are relatively fragmented compared with adults, resulting in more rapid cycling between sleep and wakefulness (Blumberg et al., 2005). Consequently, these results support the conjecture that animals that cycle faster accumulate sleep need more quickly during deprivation (Rechtschaffen et al., 1999). It may be that rapid cycling is indicative of a strong drive for sleep, but this notion remains unproven at this time.

Given that the results of Experiment 2 showed that the dissociation between sleep pressure and rebound after precollicular decerebrations is expressed similarly in infants and adults (de Andres et al., 2003), they suggest that similar neural mechanisms are involved in these processes throughout the life span. Consistent with the adult data, our results suggest that the brainstem is

Figure 5. Mean number of Fos-ir positive cells per mm² for each area sampled in the P2 rats in Experiment 3. Data are clustered into three groups reflecting nuclei that exhibited wake-active (left), sleep-active (middle), and state-indifferent (right) responses to sleep deprivation and recovery. See Figure 1B for the timeline for this experiment and the designation of experimental groups. * Significant difference from Sham groups. † Significant difference from Sham and Deprivation groups. All means are presented with standard errors. LC = locus coeruleus; LDT = laterodorsal tegmental nucleus; DMH = dorsomedial hypothalamus; PrnO = nucleus pontis oralis; MnPO = median preoptic nucleus; VLPO = ventrolateral preoptic nucleus; SCN = suprachiasmatic nucleus; MPA = medial preoptic area; BF = basal forebrain; PVN = paraventricular nucleus.
sufficient to support sleep pressure, and that areas rostral to the transection are necessary to support sleep rebound. In Experiment 3, we used c-fos immunohistochemistry to identify nuclei associated with the production of sleep pressure and rebound.

Consistent with findings in adults during periods of prolonged wakefulness induced by sleep deprivation (Cirelli, Pompeiano, & Tononi, 1995; Maloney, Mainville, & Jones, 1999), we found increased Fos-ir in LC, LDT, and DMH in our sleep-deprived P2 subjects. These results are also consistent with recording and lesion studies, performed in P8 rats, that demonstrate brainstem contributions to spontaneous sleep and wakefulness (Gall, Poremba, & Blumberg, 2007; Karlsson et al., 2005). Thus, at least
some of the neural mechanisms that underlie deprivation-induced wakefulness in adults are functional as early as P2.

The increased Fos-ir exhibited by LC, LDT, and DMH as a result of sleep deprivation persisted into the recovery period. This raises the question as to whether these nuclei maintained high levels of activity during the recovery period or whether the Fos protein simply did not degrade during the interval separating the times of sacrifice. It is known that stimulation-induced increases in Fos protein levels persist for as long as 4–8 hr (Cirelli & Tononi, 2000). Indeed, as shown in Figure 5, barrel cortex exhibited elevated Fos-ir levels during the recovery period even though orofacial stimulation ceased at the end of the deprivation period. Given that the barrel cortex exhibited a similar pattern of activation as LC, LDT, and DMH, we conclude that the sustained elevation of Fos-ir in those areas reflects the slow degradation of the Fos protein, not continued activity in those areas during the recovery period. All together, these results suggest that one or more of these nuclei, in early infancy, contribute to the maintenance of arousal during sleep deprivation and, perhaps, also play a role in the production of sleep pressure.

Of particular interest was the finding that Fos-ir increases in two hypothalamic nuclei—the MnPO and VLPO—during sleep rebound. On the basis of immunohistochemical (Gong, Szymusiak, King, Steininger, & McGinty, 2000; Sherin, Shiromani, McCarley, & Saper, 1996) and single-unit recording (Sumtsava, Szymusiak, Alam, Guzman-Marin, & McGinty, 2002; Szymusiak, Alam, Steininger, & McGinty, 1998) studies in adult rats, the MnPO and VLPO have been shown to contain distinct populations of sleep-active neurons. Fos-ir positive neurons in these nuclei are associated with recovery sleep, as measured by increases in sleep duration and delta power (Gong et al., 2004). As already discussed, the absence of delta activity at the ages examined here meant that we had to rely on sleep duration as a measure of sleep rebound. Clearly, although several hypotheses of sleep function focus on delta activity as a marker of sleep homeostasis (Porkka-Heiskanen, 1999; Tononi & Cirelli, 2003), the present findings indicate that there is no necessary relationship between sleep rebound and delta activity. Furthermore, building on a previous study of the development of delta activity (Seelke & Blumberg, 2008), our results suggest that the regulation of delta activity becomes integrated developmentally with an already-existing sleep-regulatory system.

The present findings further validate our methodological approach—which relies on behavior and nuchal EMG—for measuring sleep and wakefulness in neonates. Using these methods in neonatal rats, we have shown that brainstem (Gall et al., 2007; Karlsson et al., 2005) and forebrain (Karlsson et al., 2004; Mohns et al., 2006) mechanisms modulate sleep and wakefulness, and that these mechanisms appear identical to those identified in adults. Here, we further demonstrate that brainstem and hypothalamic nuclei associated with sleep pressure and rebound—regulatory processes that are considered among the defining features of sleep (Campbell & Tobler, 1984; Hendricks, Sehgal, & Pack, 2000)—are already functioning in infants as young as P2. Future studies can use these findings as a foundation for investigating the developmental elaboration of the neural circuits controlling sleep–wake processes throughout ontogeny and the functions of sleep for the developing animal.

References

